[1] HEISKANEN W A, MORITZ H. Physical geodesy[M]. San Francisco:W. H. Freeman and Company,1967. [2] MORITZ H. Advanced physical geodesy[M]. England:Abacus Press, 1980. [3] 李建成,陈俊勇,宁津生,等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉:武汉大学出版社,2003. LI Jiancheng, CHEN Junyong, NING Jinsheng, et al. Theory of the Earth's gravity field approximation and determination of China quasi-geoid 2000[M]. Wuhan:Wuhan University Press, 2003. [4] 黄谟涛,翟国君,管铮,等. 海洋重力场测定及其应用[M]. 北京:测绘出版社, 2005. HUANG Motao, ZHAI Guojun, GUAN Zheng, et al. Determination and application of marine gravity field[M]. Beijing:Surveying and Mapping Press, 2005. [5] SANSÒ F, SIDERIS M. Geoid determination:theory and methods[M]. Berlin:Springer,2013. [6] HIRVONEN R A, MORITZ H. Practical computation of gravity at high altitudes[M]. Ohio:Ohio State University, 1963. [7] CRUZ J Y, LASKOWSKI P. Upward continuation of surface gravity anomalies[M]. Ohio:Ohio State University, 1984. [8] 翟振和,孙中苗,李迎春,等. 航空重力测量在近海区域的精度评估与分析[J]. 测绘学报, 2015, 44(1):1-5. ZHAI Zhenhe, SUN Zhongmiao, LI Yingchun. The accuracy evaluation and analysis of airborne gravimetry in coastal area[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):1-5. [9] HUANG Motao,DENG Kailiang,WU Taiqi,et al.Research and evaluation on key technological indicators for airborne and shipborne gravimetry[J].Journal of Geodesy and Geoinformation Science,2019,2(3):44-54. [10] MORITZ H. The computation of the external gravity field and the geodetic boundary-value problem[M]//Orlin H ed. Gravity anomalies:unsurveyed areas. Washington D C:American Geophysical Union, 1966:127-136. [11] 王兴涛,石磐,朱非洲. 航空重力测量数据向下延拓的正则化算法及其谱分解[J].测绘学报,2004,33(1):33-38. WANG Xingtao, SHI Pan, ZHU Feizhou. Regularization methods and spectral decomposition for the downward continuation of airborne gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(1):33-38. [12] 徐世浙. 位场延拓的积分-迭代法[J]. 地球物理学报, 2006, 49(4):1176-1182. XU Shizhe. The integral-iteration method for continuation of potential fields[J]. Chinese Journal of Geophysics, 2006, 49(4):1176-1182. [13] 黄谟涛,刘敏,邓凯亮, 等. 基于向上延拓的航空重力向下解析延拓解[J]. 地球物理学报, 2018, 61(12):4746-4757. DOI:10.6038/cjg2018L0594. HUANG Motao, LIU Min, DENG Kailiang, et al. Analytical solution of downward continuation for airborne gravimetry based on upward continuation method[J]. Chinese Journal of Geophysics, 2018, 61(12), 4746-4757. DOI:10.6038/cjg2018L0594. [14] TRAN K V, NGUYEN T N. A novel method for computing the vertical gradients of the potential field:application to downward continuation[J]. Geophysical Journal International, 2020, 220, 1316-1329. DOI:10.1093/gji/ggz524. [15] 马在田,曹景忠,王家林, 等. 计算地球物理学[M]. 上海:同济大学出版社, 1997. MA Zaitian, CAO Jingzhong, WANG Jialin, et al. Computational geophysics[M]. Shanghai:Tongji University Press, 1997. [16] SANSÒ F, SIDERIS M G. Geodetic boundary value problem:the equivalence between Molodensky's and Helmert's solutions[M]. New York:Springer, 2017. [17] 刘敏,黄谟涛,邓凯亮, 等. 顾及地形效应的地面重力向上延拓模型分析与检验[J]. 武汉大学学报(信息科学版), 2018, 43(1):112-119. LIU Min, HUANG Motao, DENG Kailiang, et al. Test and analysis of upward continuation models for Earth surface gravity with regard to the effect of topographic height[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):112-119. [18] 翟振和,王兴涛,李迎春. 解析延拓高阶解的推导方法与比较分析[J]. 武汉大学学报(信息科学版), 2015, 40(1):134-138. ZHAI Zhenhe, WANG Xingtao, LI Yingchun. Solution and comparison of high order term of analytical continuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):134-138. [19] 刘长弘. 改进的直接积分方法计算低空扰动引力[D]. 郑州:信息工程大学, 2016. LIU Changhong. Improved direct integral methods calculating exterior disturbing gravity in low-altitude airspace[D]. Zhengzhou:Information Engineering University, 2016. [20] 黄谟涛,刘敏,邓凯亮, 等. 海域流动点外部扰动引力无奇异计算模型[J]. 地球物理学报, 2019, 62(7):2394-2404. DOI:10.6038/cjg2019L0739. HUANG Motao, LIU Min, DENG Kailiang, et al. A nonsingular model for computing the external gravity field at a mobile point in a sea area[J]. Chinese Journal of Geophysics, 2019, 62(7):2394-2404. DOI:10.6038/cjg2019L0739. [21] NOVÁK P, HECK B. Downward continuation and geoid determination based on band-limited airborne gravity data[J]. Journal of Geodesy, 2002, 76(5):269-278. [22] 刘敏,黄谟涛,欧阳永忠, 等. 顾及地形效应的重力向下延拓模型分析与检验[J]. 测绘学报,2016, 45(5):521-530. LIU Min, HUANG Motao, OUYANG Yongzhong, et al. Test and analysis of downward continuation models for airborne gravity data with regard to the effect of topographic height[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):521-530. [23] WONG L, GORE R. Accuracy of geodesy heights from modified Stokes kernels[J]. Geophysical Journal International, 1969, 18(1), 81-91. [24] PAUL M. A method of evaluating the truncation error coefficients for geoidal heights[J]. Bulletin Geodesique, 1973, 110:413-425. [25] NOVÁK P, KERN M, SCHWARZ K P. Numerical studies on the harmonic downward continuation of band-limited airborne gravity[J]. Studia Geophysica et Geodaetica, 2001, 45:327-345. [26] ALBERTS B, KLEES R. A comparison of methods for the inversion of airborne gravity data[J]. Journal of Geodesy, 2004, 78(1-2):55-65. [27] BJERHAMMAR A. A new theory of geodetic gravity[M]. Stockholm:Tekniska Hogskolan, 1964. [28] MORITZ H. The figure of the Earth:theoretical geodesy and the Earth's interior[M]. Karlsruhe:Wichmann, Germany, 1990. [29] TROMPAT H, BOSCHETTI F, HORNBY P. Improved downward continuation of potential field data[J]. Exploration Geophysics, 2003, 34(4):249-256. [30] MARTINEC Z. Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian rocky mountains[J]. Journal of Geodesy, 1996(70):805-828. [31] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the earth gravitational model 2008(EGM2008)[J]. Journal Geophysical Research, 2012, 117(B4):B04406. DOI:10.1029/2011JB008916. |