文章快速检索  
  高级检索
新型SAR对地环境观测
郭华东1,2,3, 吴文瑾1,2, 张珂1,2,3, 李新武1,2     
1. 可持续发展大数据国际研究中心, 北京 100094;
2. 数字地球重点实验室, 中国科学院空天信息创新研究院, 北京 100094;
3. 中国科学院大学, 北京 100049
摘要:合成孔径雷达(SAR)系统在对地观测中具有全天时全天候的独特优势。近十几年来, 多模式、多角度、多维度、大幅宽、高分辨率、多基协同等SAR技术的问世, 代表着新型SAR观测时代的到来。为对这一SAR发展阶段的特点和能力进行分析, 本文首先介绍了新型SAR系统观测能力的发展, 包括如何获取大范围、多时相、多层次SAR综合对地观测数据及实现月基SAR等观测技术; 然后, 总结了杂交介质建模、时频分解、深度学习、压缩感知等新型信息提取方法在SAR领域发挥的作用; 最后, 介绍了新型SAR在城市管理、植被调查、极地与海洋测绘以及灾害监测等领域的研究进展, 旨在推动SAR观测技术在测绘领域更广泛而深入的应用。
关键词合成孔径雷达    对地观测    测绘    
New generation SAR for Earth environment observation
GUO Huadong1,2,3, WU Wenjin1,2, ZHANG Ke1,2,3, LI Xinwu1,2     
1. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China;
2. Key Laboratory of Digital Earth Science, Aerospace Information Institute, Chinese Academy of Sciences, Beijing 100094, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Synthetic aperture radar (SAR) systems have the unique advantage of all-time and all-weather observation. In the past decade or so, with the continuous announcement of multi-mode, multi-angle, multi-dimension, wide-swath, high-resolution, and multi-static SAR observation technologies, SAR observation has been in the "new generation" stage. This paper first introduces the development of the observation capability of the new generation SAR, including how to realize the wide-swath, multi-temporal, and multi-level observation as well as moon-base observation; Then, the development and application of new information extraction methods such as the non-stationary statistical modeling, time-frequency decomposition, deep learning, and compressed sensing for new generation SAR images are summarized; Finally, recent application progress in urban management, vegetation mapping, polar region and ocean survey, and disaster monitoring are listed to promote wider and deeper applications of the new generation SAR.
Key words: SAR    earth observation    surveying and mapping    

合成孔径雷达(synthetic aperture radar, SAR)系统具有不受天气、日夜影响的优良特性,因而在实时地表信息获取、多云雾地区测绘、时序动态分析等方面扮演着重要角色。自1957年密歇根大学采用机载平台获得第一张SAR影像之后,半导体技术、数字技术和计算机技术快速发展,SAR系统和信息提取技术也获得了持续更新[1]。截至目前,SAR对地观测技术已经经过了4个阶段的更迭[2],其中近十几年来以多模式、多角度、多维度、大幅宽、高分辨率、多基协同等技术为代表的发展阶段被称为第4阶段SAR或新型SAR。这同时也是SAR影像大量由军用走向民用、由商业走向免费、用户数量和应用范围大幅激增的重要阶段。在此背景下,本文从SAR对地观测技术、信息提取技术及应用3个方面总结了这一个发展阶段中SAR的特点和能力,展望了其发展趋势以及在测绘领域可发挥的作用与优势,以期推动SAR在测绘领域的发展。

1 新型SAR观测技术

2010年以来,中国高分三号[3]、天绘二号[4],欧空局(ESA)Sentinel-1[5]、BIOMASS[6],德国TanDEM-L[7],加拿大RADARSAT Constellation Mission (RCM)[8]等星载SAR任务的预定和运行,以及各类先进机载SAR设备的问世标志着新型SAR对地观测系统的蓬勃发展。这一阶段SAR系统普遍具有大幅宽、高分辨率、多维度甚至多角度观测能力,月基SAR等概念系统的理论模型也逐步完善,在硬件层面为大范围、多层次、精细对地观测信息的快速获取奠定了基础,这将为大面积高精度地表测绘提供极大便利。

1.1 大幅宽观测

大的测绘带宽是实现大范围宏观信息获取及高频率重访的必要要求。为解决SAR在观测宽度和分辨率方面对系统设计参数需求中的矛盾[9],研究人员提出了多种观测波束拓展和重构技术。方位向多波束通过在方位向发射多个窄带波束或分解宽波束再重构信号,实现方位向高分辨率宽幅观测[10-13],此类技术已在高分三号系统中得到应用。变脉冲重复频率通过周期性改变脉冲重复频率,将集中的回波盲区分散在整个成像带内[14],从而对距离向连续成像,形成距离向大带宽。俯仰向数字波束合成可在宽波束信号的同时实现高增益以提高系统信噪比,目前在机载系统中得到了论证。多发多收技术通过更多的收发端在高分辨率宽幅成像的同时实现多模式协同,已获得试验论证[15-17]。随着这些技术的落实及推广,SAR系统的重访能力和信噪比仍有同步提升的空间,这将进一步减轻影像拼接、去噪等处理任务,提高对地球动态信息的追踪和分析能力。

除改变波束策略以外,提高轨道高度也是增大测绘带宽的重要手段。SAR卫星系统轨道一般在2000 km以下,而目前已有研究表明,地球同步轨道卫星(高度约3.6万km)可通过其与地球之间的相对运动形成合成孔径,从而满足SAR成像原理,理论上具备小时级重访能力、甚至可通过设计脉冲重复频率变化实现凝视观测[18],预期可为台风登陆、火山爆发、地震等灾情监测带来新机遇。

1.2 高分辨率及毫米波观测

高空间分辨率可显著增强影像的描述能力,提供更丰富的地物细节并有助于小型地物的识别和分析。目前多数机载SAR系统及SAR-Lupe[19]等星载SAR系统已实现亚米级空间分辨率。其中在距离向的实现主要依靠增大信号带宽,在方位向则可通过聚束和滑动聚束模式增加合成孔径积累时间。

特别地,毫米波因多方面优势成为越来越多高分辨率SAR系统的选择[20],包括:工作频率高(30~300 GHz),易获得大带宽和距离向高分辨率;天线尺寸小,易小型化;干涉基线短,同条件下高度向分辨率更高;穿透弱,影像轮廓清晰等。目前毫米波SAR系统在机载平台已经非常成熟,如德国的MEMPHIS系统[21],美国Sandia实验室的Ka SAR[22],中国北京无线电测量研究所的CAMSAR[23-24]等。相比之下,星载毫米波SAR报道较少,我国齐鲁一号搭载Ka波段SAR于2021年成功发射,美国的表面水及海洋地形任务(surface water ocean topography, SWOT)将搭载Ka波段双站干涉SAR(Ka-band radar interferometer, KaRIn),用于获取厘米级精度的海洋表面高度[25],为海洋测绘开启新篇章。

1.3 多角度观测

多角度SAR系统可从不同方位角对地表进行观测,获得地物的各向异性信息,一定程度上消除阴影和叠掩,还可对散射体的高程进行解算[26-27],具体可通过斜视扫描、宽方位波束观测、圆迹观测等方式实现。斜视成像算法的成熟为大斜视扫描奠定了基础[28],使得SAR系统能通过改变斜视角(波束的方位指向)对平台前后区域成像,从而获得多角度信息。宽方位波束SAR具有较大的方位向视角,可通过子孔径分解获取地物的多角度信息[29],因其能获得的角度范围有限,主要用来识别各向异性地物,可用于实现自动化的建筑物分布提取[30-31]。圆迹观测将观测波束固定指向感兴趣地物,通过平台绕飞获得360°的观测信息,旨在实现高分辨率三维信息重建[32-34]。此外,还可通过正交或反向飞行实现多角度观测,在道路等方向性地物的提取中优势明显[35-36]

1.4 多星/多基协同观测

近年来发射的大型星载SAR系统多为多星模式,小型商业SAR星座也在快速发展,芬兰ICEYE[37]、美国CapellaSpace[38]、日本Synspective[39]等公司均已布建SAR卫星星座,我国的海丝[40]、齐鲁小卫星星座中的首颗SAR卫星也已发射升空。多星组网可实现更广泛的覆盖能力和更短的重复周期,如Sentinel-1重访周期由单星的12 d降低至双星6 d[41],加拿大雷达卫星星座任务(RCM)能够对北极地区每天重访4次[8],TerraSAR-X/PAZ卫星星座具备全球单日重访能力。此外,将SAR系统的发射和接收天线分设于多个平台上可构建多基协同观测[42-44],利于实现长基线及不同长度基线的干涉测量,从而获得更好的高度向测量精度或动目标分析能力[45-46]。多星/多基协同系统的蓬勃发展将大力促进SAR系统在三维/四维信息获取方面的应用,提高地形测绘精度。

1.5 月基SAR观测

人造卫星和机载平台只能对地球上有限区域进行短暂观测,信息获取的宏观性和连续性受到限制。月球是地球唯一的自然卫星,是提供长期、稳定对地观测的最佳选择。相对于星载SAR,月基SAR的优势包括:测绘带宽高于星载SAR一个数量级;可通过分布式SAR形成长期稳定的干涉基线,获取比星载SAR高一至两个量级精度的地形和形变测绘能力;通过合理维护可实现远高于星载平台的工作寿命,提供长期一致的校准数据等[47-49]。近年来,有关学者在月基SAR原理及关键技术方面开展了丰富的研究。在系统方面,对单/多站月基SAR观测几何[50-52]、信号历程[53-54]、系统参数特征[55]和选址[56]进行了分析;在成像方面,论证了地球曲率和月球公转效应对成像的影响,并开展了成像仿真[57-58];在图像处理方面,提出了月基SAR辐射定标和几何校正方法;在应用方面,提出了针对固体潮形变的月基重轨及多基线干涉方案[59-61]。月基SAR观测的实现预期将为大尺度、长周期地表观测开拓更多的发展空间[62-63]

2 新型SAR信息提取技术

分辨率的提高使得SAR影像所包含的地物细节极大丰富,但同时也导致影像散射机理特性改变。在高分辨率SAR影像中,地物通常表现为点、线等在空间上不连续的零散结构,这使得很多传统图像处理方法不再适用,加之新的观测模式为更丰富信息的获取提供了可能,新型SAR信息提取方法和技术大量涌现。

2.1 杂交介质统计建模

斑点噪声是SAR影像的固有特性,受其影响,SAR影像上一个像元的散射强度并不能直接与该点地物的后向散射系数相对应,因此统计建模是SAR影像描述的重要手段。传统SAR统计建模中认为地表在小窗口范围内是均质的,即不存在主导性散射体[64]。而随着分辨率的提高,这一假设不再成立。研究人员提出很多描述强散射中心叠加均质地物的杂交介质模型,包括基于Rician分布[31],复广义高斯分布(CGGD)[24]、广义gamma分布[65],stable-Rayleigh分布[66],广义高斯Rayleigh分布[67]的方法等,并在高分辨率SAR影像滤波[68]、分割分类[69]、边缘提取[70]、地物识别[71]等任务中发挥了重要作用。

2.2 时频分解

时频分解通过构建一个时间和频率的二维联合分布来分析统计量随时间或空间改变的信号[72],是挖掘SAR影像中地物各向异性及运动信息的重要手段[73-75],还可进一步被用于成像优化[76-77]及变化检测中[78]。近年来,针对宽幅SAR中的信号干扰问题,研究学者提出了基于低秩稀疏矩阵分解的时频分析方法[79]。在时频分解中结合极化信息及深度学习技术为主要的发展趋势,相关方法在图像分类、船只等目标检测等方面体现出了优异的性能[80-82]。目前在SAR领域中应用的时频分析方法还主要局限在短时傅里叶变换,它通过对SAR影像的二维傅里叶频谱进行加窗,再截取每个窗口频谱变换到空域形成子孔径图像[83]。但该方法存在时间和空间分辨率无法同时提高的问题,会限制信息提取的精度。时频窗口更为灵活的分解方法在SAR领域中还有待应用和发展。

2.3 深度学习

分辨率提高带来的SAR影像场景复杂性加大使得传统机器学习和人工制作特征带来的局限性日益明显。深度学习通过非线性地联合数十甚至数百层神经网络自动实现特征提取和筛选,在近年来得到飞速发展。基于深度学习的图像信息提取方法通常以卷积神经网络(convolutional neural network, CNN)为核心,对多层次的上下文信息进行自主挖掘和集成,从而同时实现图像的精细描述和高度抽象。在SAR领域中,深度学习技术已被成功用于复杂场景分类、图像分割、像素级平滑分类、特殊目标检测等处理中[84-86]。特别地,针对SAR原始数据的复数特性及极化、干涉等特色信息利用的SAR专用深度网络也被相继提出,显著提升了SAR信息提取的智能程度和稳健性[87-91]。然而,受限于现有SAR数据标注样本的体量和构建难度,深度学习在SAR领域中发挥的作用还非常初级,弱监督甚至无监督的方法模型亟待发展,并正在成为这一领域主要的发展趋势。

2.4 压缩感知

压缩感知(compressed sensing, CS)[92-95]是一种稀疏信号采样及重构方法,即可以在避免信号损失的前提下用远低于奈奎斯特采样定理要求的速率进行信号采样与重构。它采用一个与稀疏基不相关的感知矩阵,将高维信号投影到一个低维空间上,然后通过求解一个优化问题,从少的投影中以高概率重构出原信号[96]。目前压缩感知技术已广泛应用于SAR影像的超分辨率成像和三维、四维层析成像中,如建筑物三维结构高精度反演[97]、森林垂直结构重建[98]等工作。目前主要的发展趋势集中在顾及散射机制的极化层析、永久散射体差分层析[99]、联合压缩感知与深度学习的三维超分辨率成像[100]以及阵列前视成像[101]等方向。相关技术的发展将大力支撑对存在垂直结构地物的精细信息提取。

3 新型SAR的应用

新的SAR观测模式和信息提取手段带来了更丰富、更高精度的信息获取能力,为SAR系统在城市管理、植被调查、极地与海洋测绘、灾害监测等领域的发展带来了更多机遇。不受云雨影响的高重访周期、超宽幅成像、媲美光学影像的平滑地物分类、高度维精细成像等新特性使SAR系统得到越来越广泛的应用。

3.1 城市管理

基于SAR数据的城市土地覆盖/利用分类及三维/四维信息提取在城市规划、灾害预警、数字孪生等城市管理工作中发挥着重要作用。在土地覆盖/利用信息获取方面,研究人员通过极化SAR深度神经网络实现了详细的城市地物分布测绘[102];结合改进的差分图像和残差U-Net网络可实现高敏度城市建筑物变化检测[103];毫米波SAR影像和毫米波特色特征描述集为城市精细地表信息获取提供支持[104]。在三维/四维信息提取方面,基于大地测量层析成像框架实现了厘米级绝对定位精度的城市三维重建[105];基于高分三号SAR数据和差分层析成像技术探测到了毫米级的建筑物形变[106];广义差分成像模型实现了建筑物的线性运动、季节性运动等多个形变速率的精确反演[107];永久散射体层析成像被应用于多个城市建成区的高精度连续形变监测[108]。这些新型SAR的应用正快速推动着城市管理的数字化和精细化进程。

3.2 植被调查

SAR在植被调查中被用于植被分类、高度反演、垂直结构分析、生物量统计等多个方面。如研究学者将Sentinel-1数据与原位调查结合,绘制了欧盟大陆首张10 m分辨率作物类型分布产品[109];使用多种高分辨率SAR卫星观测数据联合估计了全球森林地面生物量[110];通过联合Sentinel-1与Sentinel-2对全北极植被高度进行了制图[111]等。特别地,由于长波SAR对植被冠层的穿透性,SAR数据相比光学数据在生物量反演方面具有天然优势,并可突破光学模型中的高生物量饱和问题。欧洲航天局的BIOMASS计划将搭载P波段SAR于2023年发射以提供全球森林地面生物量数据[112],通过联合L和P波段的生物量反演模型可显著提高热带森林生物量反演饱和点[113]。此外,结合极化SAR对具有不同散射机制的散射体进行解混可对树木不同部位的信号进行分离,从而实现树木垂直结构的精细提取[114]。基于SAR数据的植被参数反演已逐渐成为林草、农业资源评估及碳动态监测的一个关键途径,对热带亚热带等常年多云雨地区的植被遥感调查尤其具有重要意义。

3.3 极地与海洋测绘

SAR在极地测绘中主要应用于海冰分类、冰面冻融监测、冰面特征监测、冰盖运动测量等方面,在海洋测绘中主要用于对海面风场、海浪、海流以及海洋污染事件等进行监测。由于极地与海洋研究通常涉及面积大、空间范围广,对数据的幅宽提出了很高要求。新型SAR普遍具备ScanSAR模式,观测范围可达数百公里[115],可有效减轻影像拼接工作量并提高结果图的完整性及时空一致性。多项研究使用Sentinel-1 Scan SAR数据生成了高时空分辨率的南极冰盖冻融及南、北极海冰分类数据集[116-118]。此外,研究学者还基于SAR数据生产了冰流速[119]、冰缘湖分布[120]、冰裂隙分布[121]等极地环境关键要素专题产品。这些研究成果将有助于我们量化极地环境对气候变化的响应、支撑对冰川动力学及地球系统过程的进一步理解。在海洋监测方面,多种物理和经验模型以及极化、干涉测量等技术被用于对海面风场[122-124],海浪[125-126]和海流[127-129]参数进行反演。我国于2020年12月发射海丝一号C波段海洋观测卫星可获取米级分辨率SAR影像,将致力于提供高分辨率海洋环境监测服务[40]

3.4 灾害监测

SAR的全天时、全天候特性及其对水体和三维结构的敏感性使它在灾害监测中具有独特优势,有助于形成对地震及次生灾害、山体滑坡及泥石流、森林火灾、台风及洪涝等自然灾害的应急快速反应能力。SAR数据被用于2016年意大利阿马特里斯地震[130]、2017年四川滑坡灾害[131]、2019年加拿大森林火灾[132]、2020年鄱阳湖洪水[133]、2022年青海地震[134]、2022年汤加火山喷发[135]等大型灾害的应急监测中,为有关事件的救援、时空衍化追溯、灾情发展预测等工作提供了宝贵的信息。特别地,干涉SAR的三维信息获取能力对于地质灾害的预测和分析具有非常重要的意义,可提高有关人员提前疏散的成功率,有利于减轻生命和财产损失。

4 总结与展望

新型SAR系统通过多种技术手段实现了大幅宽观测、高分辨率观测、多角度观测、多维度观测、多模式观测等更全面、深入的对地探测能力,通过更先进的信息提取技术,可用来获取大范围、多时相、多层次、多角度的集成对地观测数据。随着数据的增多、数据使用成本下降、数据获取机动性和灵活性的提高,以及国产系统的蓬勃发展,新型SAR将在城市管理、植被调查、极地和海洋测绘、灾害监测等领域中发挥更为重要的作用,作为光学数据时空覆盖和探测维度的扩展,也在全面提升对地观测系统的综合信息获取能力。


参考文献
[1]
梁泽浩, 王晋, 李广雪. 星载SAR技术的发展及应用浅析[J]. 测绘与空间地理信息, 2021, 44(2): 29-32.
LIANG Zehao, WANG Jin, LI Guangxue. Brief analysis on SAR technology and application of spaceborne SAR[J]. Geomatics & Spatial Information Technology, 2021, 44(2): 29-32. DOI:10.3969/j.issn.1672-5867.2021.02.007
[2]
郭华东, 李新武, 傅文学. 新型SAR地球环境观测[M]. 北京: 高等教育出版社, 2020.
GUO Huadong, LI Xinwu, FU Wenxue. New generation SAR for earth environment observation[M]. Beijing: Higher Education Press, 2020.
[3]
张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269-277.
ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269-277. DOI:10.11947/j.AGCS.2017.20170049
[4]
楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10): 1252-1264.
LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264. DOI:10.11947/j.AGCS.2020.20200175
[5]
TORRES R, SNOEIJ P, GEUDTNER D, et al. GMES sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120: 9-24. DOI:10.1016/j.rse.2011.05.028
[6]
TOAN T L, QUEGAN S, DAVIDSON M W J, et al. The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle[J]. Remote Sensing of Environment, 2011, 115(11): 2850-2860. DOI:10.1016/j.rse.2011.03.020
[7]
MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: a highly innovative bistatic SAR mission for global observation of dynamic processes on the earth̓s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8-23. DOI:10.1109/MGRS.2015.2437353
[8]
THOMPSON A A. Overview of the RADARSAT constellation mission[J]. Canadian Journal of Remote Sensing, 2015, 41(5): 401-407. DOI:10.1080/07038992.2015.1104633
[9]
李新武, 郭华东, 彭星, 等. SAR对地观测技术及应用新进展[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2): 170-180.
LI Xinwu, GUO Huadong, PENG Xing, et al. New advances of SAR and its application in earth observation[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(2): 170-180.
[10]
CURRIE A, BROWN M A. Wide-swath SAR[J]. IEE Proceedings F Radar and Signal Processing, 1992, 139(2): 122. DOI:10.1049/ip-f-2.1992.0016
[11]
KRIEGER G, GEBERT N, MOREIRA A. Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. DOI:10.1109/TGRS.2007.905974
[12]
LI Zhenfang, WANG Hongyang, SU Tao, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82-86. DOI:10.1109/LGRS.2004.840610
[13]
KRIEGER G, GEBERT N, MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260-264. DOI:10.1109/LGRS.2004.832700
[14]
VILLANO M, KRIEGER G, MOREIRA A. Staggered SAR: high-resolution wide-swath imaging by continuous PRI variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4462-4479. DOI:10.1109/TGRS.2013.2282192
[15]
KRIEGER G. MIMO-SAR: opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. DOI:10.1109/TGRS.2013.2263934
[16]
WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625. DOI:10.1109/TGRS.2014.2346478
[17]
CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034-5055. DOI:10.1109/TGRS.2013.2286520
[18]
李财品, 何明一. 地球同步轨道SAR凝视成像变脉冲重复频率技术[J]. 电子科技大学学报, 2016, 45(6): 917-922.
LI Caipin, HE Mingyi. The technology of pulse repetition frequency variation for geosynchronous orbit SAR with staring imaging[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(6): 917-922. DOI:10.3969/j.issn.1001-0548.2016.06.007
[19]
BRAUN H M, MERKLE F. The new German high-resolution SAR reconnaissance system started its 10-year operations[C]//Proceedings of the SPIE 7330, Sensors and Systems for Space Applications Ⅲ. Orlando, Florida, USA: SPIE, 2009, 7330: 9-14.
[20]
王辉, 赵凤军, 邓云凯. 毫米波合成孔径雷达的发展及其应用[J]. 红外与毫米波学报, 2015, 34(4): 452-459.
WANG Hui, ZHAO Fengjun, DENG Yunkai. Development and application of the millimeter wave SAR[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 452-459.
[21]
MAGNARD C, BREHM T, ESSEN H, et al. High resolution MEMPHIS SAR data processing and applications[C]//Proceedings of the Electromagnetics Research Symposium Proceedings. Kuala Lumpur, Malaysia: Electromagnetics Academy, 2012: 328-332.
[22]
DOERRY A W, DUBBERT D F, THOMPSON M, et al. A portfolio of fine resolution Ka-band SAR images: part Ⅰ[C]//Proceedings of the SPIE 5788, Radar Sensor Technology IX. Orlando, Florida, USA: SPIE, 2005: 13-24.
[23]
WU Wenjin, LI Xinwu, GUO Huadong, et al. Noncircularity parameters and their potential applications in uhr mmw sar data sets[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1547-1551. DOI:10.1109/LGRS.2016.2595762
[24]
WU Wenjin, GUO Huadong, LI Xinwu, et al. Urban land use information extraction using the ultrahigh-resolution Chinese airborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5583-5599. DOI:10.1109/TGRS.2015.2425658
[25]
FJORTOFT R, GAUDIN J M, POURTHIé N, et al. KaRIn on SWOT: characteristics of near-nadir Ka-band interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2172-2185. DOI:10.1109/TGRS.2013.2258402
[26]
曹淑敏. 斜视多角度SAR图像配准及高度估计方法研究[D]. 青岛: 山东科技大学, 2017.
CAO Shumin. Research on squint and mylti-angle image registration and height estimation[D]. Qingdao: Shandong University of Science and Technology, 2017.
[27]
周汉飞. 多角度SAR成像及特征提取[D]. 长沙: 国防科学技术大学, 2013.
ZHOU Hanfei. Multi-aspect SAR imaging and feature extraction[D]. Changsha: National University of Defense Technology, 2013.
[28]
别博文. 高速机动平台大斜视SAR宽幅成像算法研究[D]. 西安: 西安电子科技大学, 2019.
BIE Bowen. Study on high speed maneuvering platforms high squint SAR wide swath imaging algorithm[D]. Xi̓an: Xidian University, 2019.
[29]
曹淑敏, 吴文瑾, 李新武, 等. 斜视SAR重采样误差分析及改进[J]. 遥感信息, 2017, 32(6): 1-7.
CAO Shumin, WU Wenjin, LI Xinwu, et al. Resampling error analysis and improvement of squint SAR[J]. Remote Sensing Information, 2017, 32(6): 1-7. DOI:10.3969/j.issn.1000-3177.2017.06.001
[30]
WU Wenjin, GUO Huadong, LI Xinwu. Urban area SAR image man-made target extraction based on the product model and the time-frequency analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 943-952. DOI:10.1109/JSTARS.2014.2371064
[31]
WU Wenjin, GUO Huadong, LI Xinwu. Man-made target detection in urban areas based on a new azimuth stationarity extraction method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1138-1146. DOI:10.1109/JSTARS.2013.2243700
[32]
PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170-6196. DOI:10.1109/TGRS.2016.2582959
[33]
PONCE O, PRATS P, RODRIGUEZ-CASSOLA M, et al. Processing of circular SAR trajectories with fast factorized back-projection[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada. IEEE, 2011: 3692-3695.
[34]
LIN Yun, HONG Wen, TAN Weixian, et al. Airborne circular SAR imaging: results at P-band[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. July 22-27, 2012, Munich, Germany: IEEE, 2012: 5594-5597.
[35]
申文杰, 韩冰, 林赟, 等. 多角度SAR动目标检测技术及其高分三号实验验证研究[J]. 雷达学报, 2020, 9(2): 304-320.
SHEN Wenjie, HAN Bing, LIN Yun, et al. Multi-aspect SAR-GMTI and experimental research on Gaofen-3 SAR modes[J]. Journal of Radars, 2020, 9(2): 304-320.
[36]
SCHMITT M, STILLA U. Fusion of airborne multi-aspect InSAR data by simultaneous backward geocoding[C]//Proceedings of 2011 Joint Urban Remote Sensing Event. Munich, Germany: IEEE, 2011: 53-56.
[37]
IGNATENKO V, LAURILA P, RADIUS A, et al. ICEYE microsatellite SAR constellation status update: evaluation of first commercial imaging modes[C]//Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI, USA. IEEE, 2020: 3581-3584.
[38]
CASTELLETTI D, FARQUHARSON G, STRINGHAM C, et al. Capella space first operational SAR satellite[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 1483-1486.
[39]
SAITO H, TANAKA K, MITA M, et al. Development and orbit demonstration of small synthetic aperture radar satellite[C]//Proceedings of the 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Bali, Indonesia: IEEE, 2021: 1-5.
[40]
XUE Sihan, GENG Xupu, MENG Lingsheng, et al. HISEA-1: the first C-band SAR miniaturized satellite for ocean and coastal observation[J]. Remote Sensing, 2021, 13(11): 2076. DOI:10.3390/rs13112076
[41]
POTIN P, ROSICH B, GRIMONT P, et al. Sentinel-1 mission status[C]//Proceedings of the 11th European Conference on Synthetic Aperture Radar. Hamburg, Germany: VDE, 2016: 1-6.
[42]
ZENG Tao, ZHU Mao, HU Cheng, et al. Experimental results and algorithm analysis of DEM generation using bistatic SAR interferometry with stationary receiver[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 5835-5852. DOI:10.1109/TGRS.2015.2422303
[43]
ZHANG Mingmi, WANG R, DENG Yunkai, et al. A synchronization algorithm for spaceborne/stationary BiSAR imaging based on contrast optimization with direct signal from radar satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1977-1989. DOI:10.1109/TGRS.2015.2493078
[44]
杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501.
YANG Jianyu. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501.
[45]
FORNARO G, REALE D, PAUCIULLO A, et al. SAR Tomography: an advanced tool for spaceborne 4D radar scanning with application to imaging and monitoring of cities and single buildings[J]. IEEE Geoscience and Remote Sensing Newsletter, 2012, 6(1): 9-17.
[46]
BAUMGARTNER S V, KRIEGER G. Large along-track baseline SAR-GMTI: first results with the TerraSAR-X/TanDEM-X satellite constellation[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, 2011: 1319-1322.
[47]
郭华东, 张露. 雷达遥感六十年: 四个阶段的发展[J]. 遥感学报, 2019, 23(6): 1023-1035.
GUO Huadong, ZHANG Lu. 60 years of radar remote sensing: four-stage development[J]. Journal of Remote Sensing, 2019, 23(6): 1023-1035.
[48]
郭华东, 丁翼星, 刘广, 等. 面向全球变化探测的月基成像雷达概念研究[J]. 中国科学: 地球科学, 2013, 43(11): 1760-1769.
GUO Huadong, DING Yixing, LIU Guang, et al. Conceptual study of lunar-based SAR for global change monitoring[J]. Scientia Sinica Terrae, 2013, 43(11): 1760-1769.
[49]
GUO Huadong, FU Wenxue, LIU Guang. Scientific Satellite and Moon-Based Earth Observation for Global Change[M]. Singapore: Springer Singapore, 2019.
[50]
GUO Huadong, REN Yuanzhen, LIU Guang, et al. The angular characteristics of Moon-based Earth observations[J]. International Journal of Digital Earth, 2020, 13(3): 339-354. DOI:10.1080/17538947.2019.1593526
[51]
REN Yuanzhen, GUO Huadong, LIU Guang, et al. Simulation study of geometric characteristics and coverage for moon-based earth observation in the electro-optical region[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2431-2440. DOI:10.1109/JSTARS.2017.2711061
[52]
DING Yixing, GUO Huadong, LIU Guang, et al. Constructing a high-accuracy geometric model for moon-based earth observation[J]. Remote Sensing, 2019, 11(22): 2611. DOI:10.3390/rs11222611
[53]
XU Zhen, CHEN Kunshan. On signal modeling of moon-based synthetic aperture radar (SAR) imaging of earth[J]. Remote Sensing, 2018, 10(3): 486. DOI:10.3390/rs10030486
[54]
XU Zhen, CHEN Kunshan. Temporal-spatial varying background ionospheric effects on the moon-based synthetic aperture radar imaging: a theoretical analysis[J]. IEEE Access, 2018, 6: 66767-66786. DOI:10.1109/ACCESS.2018.2853163
[55]
李德伟, 江利明, 蒋厚军, 等. 月基SAR对地观测系统参数分析[J]. 系统工程与电子技术, 2020, 42(4): 792-798.
LI Dewei, JIANG Liming, JIANG Houjun, et al. System parameters analysis of the Moon-based SAR Earth observation[J]. Systems Engineering and Electronics, 2020, 42(4): 792-798.
[56]
CHEN Guoqiang, GUO Huadong, DING Yixing, et al. Influence of topography on the site selection of a moon-based earth observation station[J]. Sensors (Basel, Switzerland), 2021, 21(21): 7198. DOI:10.3390/s21217198
[57]
XU Zhen, CHEN Kunshan. Effects of the Earth̓s curvature and lunar revolution on the imaging performance of the moon-based synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5868-5882. DOI:10.1109/TGRS.2019.2902842
[58]
XU Zhen, CHEN Kunshan, ZHOU Guoqing. Effects of the Earth̓s irregular rotation on the moon-based synthetic aperture radar imaging[J]. IEEE Access, 2019, 7: 155014-155027. DOI:10.1109/ACCESS.2019.2948979
[59]
DONG Jinglong, SHEN Qiang, JIANG Liming, et al. An analysis of spatiotemporal baseline and effective spatial coverage for lunar-based SAR repeat-track interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3458-3469. DOI:10.1109/JSTARS.2019.2928439
[60]
李德伟, 江利明, 蒋厚军, 等. 固体潮位移InSAR相位模拟及对广域地表形变监测的影响初探[J]. 地球物理学报, 2019, 62(12): 4527-4539.
LI Dewei, JIANG Liming, JIANG Houjun, et al. InSAR phase simulation of solid earth tide and its influence on surface deformation monitoring at wide-area scale[J]. Chinese Journal of Geophysics, 2019, 62(12): 4527-4539. DOI:10.6038/cjg2019M0595
[61]
WU Kai, JI Ce, LUO Lei, et al. Simulation study of moon-based InSAR observation for solid earth tides[J]. Remote Sensing, 2020, 12(1): 123. DOI:10.3390/rs12010123
[62]
郭华东. 地球系统空间观测: 从科学卫星到月基平台[J]. 遥感学报, 2016, 20(5): 716-723.
GUO Huadong. Earth system observation from space: from scientific satellite to Moonbased platform[J]. Journal of Remote Sensing, 2016, 20(5): 716-723.
[63]
GUO Huadong, LIU Guang, DING Yixing, et al. Moon-based earth observation for large scale geoscience phenomena[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 2016: 3705-3707.
[64]
GAO Gui. Statistical modeling of SAR images: a survey[J]. Sensors (Basel, Switzerland), 2010, 10(1): 775-795. DOI:10.3390/s100100775
[65]
LI Hengchao, HONG Wen, WU Yirong, et al. On the empirical-statistical modeling of SAR images with generalized gamma distribution[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 386-397. DOI:10.1109/JSTSP.2011.2138675
[66]
PALM B G, BAYER F M, CINTRA R J, et al. Rayleigh regression model for ground type detection in SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1660-1664. DOI:10.1109/LGRS.2019.2904221
[67]
KARAKUȘO, KURUOǦLU E E, ACHIM A. A generalized Gaussian extension to the rician distribution for SAR image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[68]
PENNA P A A, MASCARENHAS N D A. SAR speckle nonlocal filtering with statistical modeling of haar wavelet coefficients and stochastic distances[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7194-7208. DOI:10.1109/TGRS.2019.2912153
[69]
XIANG Deliang, ZHANG Fan, ZHANG Wei, et al. Fast pixel-superpixel region merging for SAR image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9319-9335. DOI:10.1109/TGRS.2020.3041281
[70]
JING Wenbo, JIN Tian, XIANG Deliang. SAR image edge detection with recurrent guidance filter[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1064-1068. DOI:10.1109/LGRS.2020.2990688
[71]
LI Tao, LIU Zheng, RAN Lei, et al. Target detection by exploiting superpixel-level statistical dissimilarity for SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 562-566. DOI:10.1109/LGRS.2018.2805714
[72]
AINSWORTH T L, JANSEN R W, LEE J S, et al. Sub-aperture analysis of high-resolution polarimetric SAR data[C]//Proceedings of 1999 IEEE International Geoscience and Remote Sensing Symposium. IGARSS̓99 (Cat. No. 99CH36293). Hamburg, Germany: IEEE, 1999: 41-43.
[73]
CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. DOI:10.1109/TGRS.2016.2551720
[74]
HE Chu, LI Shuang, LIAO Zixian, et al. Texture classification of PolSAR data based on sparse coding of wavelet polarization textons[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4576-4590. DOI:10.1109/TGRS.2012.2236338
[75]
CUI Shiyong, SCHWARZ G, DATCU M. Remote sensing image classification: no features, no clustering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5158-5170. DOI:10.1109/JSTARS.2015.2495267
[76]
ANGHEL A, VASILE G, IOANA C, et al. Vibration estimation in SAR images using azimuth time-frequency tracking and a matched signal transform[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy: IEEE, 2015: 2576-2579.
[77]
HU Canbin, XIONG Boli, LU Jun, et al. SAR Azimuth ambiguities removal for ship detection using time-frequency techniques[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 2014: 982-985.
[78]
MIAN A, OVARLEZ J P, GINOLHAC G, et al. Multivariate change detection on high resolution monovariate SAR image using linear time-frequency analysis[C]//Proceedings of the 25th European Signal Processing Conference (EUSIPCO). Kos, Greece: IEEE, 2017: 1942-1946.
[79]
LYU Qiyuan, HAN Bing, LI Guangzuo, et al. SAR interference suppression algorithm based on low-rank and sparse matrix decomposition in time-frequency domain[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[80]
ZHANG Lu, HUANG Yue, FERRO-FAMIL L, et al. Effect of polarimetric information on time-frequency analysis using spaceborne SAR image[C]//Proceedings of the 13th European Conference on Synthetic Aperture Radar. [S. l. ]: VDE, 2021: 1-6.
[81]
CEXUS J C, TOUMI A. Radar target recognition using time-frequency analysis and polar transformation[C]//Proceedings of the 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). Sousse, Tunisia: IEEE, 2018: 1-6.
[82]
HUANG Zhongling, DUMITRU C O, PAN Zongxu, et al. A novel deep learning framework based on transfer learning and joint time-frequency analysis[C]//TerraSAR-X Science Team Meeting 2019. Oberpfaffenhofen, Germany: [s. n. ], 2019.
[83]
BANDA F, FERRO-FAMIL L, TEBALDINI S. Polarimetric time-frequency analysis of vessels in Spotlight SAR images[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 2014: 1033-1036.
[84]
YUE Zhenyu, GAO Fei, XIONG Qingxu, et al. A novel attention fully convolutional network method for synthetic aperture radar image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4585-4598. DOI:10.1109/JSTARS.2020.3016064
[85]
VITALE S, FERRAIOLI G, PASCAZIO V. Multi-objective CNN-based algorithm for SAR despeckling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(11): 9336-9349.
[86]
XIA Junshi, YOKOYA N, ADRIANO B, et al. A benchmark high-resolution GaoFen-3 SAR dataset for building semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5950-5963. DOI:10.1109/JSTARS.2021.3085122
[87]
ZHOU Yu, WANG Haipeng, XU Feng, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1935-1939. DOI:10.1109/LGRS.2016.2618840
[88]
ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177-7188. DOI:10.1109/TGRS.2017.2743222
[89]
GENG Jie, FAN Jianchao, WANG Hongyu, et al. High-resolution SAR image classification via deep convolutional autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2351-2355. DOI:10.1109/LGRS.2015.2478256
[90]
WU Wenjin, LI Hailei, ZHANG Lu, et al. High-resolution PolSAR scene classification with pretrained deep convnets and manifold polarimetric parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6159-6168. DOI:10.1109/TGRS.2018.2833156
[91]
WU Wenjin, LI Hailei, LI Xinwu, et al. PolSAR image semantic segmentation based on deep transfer learning—realizing smooth classification with small training sets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 977-981. DOI:10.1109/LGRS.2018.2886559
[92]
SHANNON C E. Communication in the presence of noise[J]. Proceedings of the IEEE, 1984, 72(9): 1192-1201. DOI:10.1109/PROC.1984.12998
[93]
CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DOI:10.1109/TIT.2005.862083
[94]
YANG Jungang, JIN Tian, XIAO Chao, et al. Compressed sensing radar imaging: fundamentals, challenges, and advances[J]. Sensors (Basel, Switzerland), 2019, 19(14): 3100. DOI:10.3390/s19143100
[95]
NI Jiacheng, ZHANG Qun, LUO Ying, et al. Compressed sensing SAR imaging based on centralized sparse representation[J]. IEEE Sensors Journal, 2018, 18(12): 4920-4932. DOI:10.1109/JSEN.2018.2831921
[96]
POTTER L C, ERTIN E, PARKER J T, et al. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020. DOI:10.1109/JPROC.2009.2037526
[97]
梁雷. 基于压缩感知的极化层析SAR建筑物与树林三维结构参数反演研究[D]. 北京: 中国科学院大学.
LIANG Lei. Study of compressive sensing-based polarimetric SAR tomography for inversion of three-dimensional structural parameters of buildings and forests[D]. Beijing: University of Chinese Academy of Sciences.
[98]
CAZCARRA-BES V, PARDINI M, TELLO M, et al. Comparison of tomographic SAR reflectivity reconstruction algorithms for forest applications at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 147-164. DOI:10.1109/TGRS.2019.2934347
[99]
LIU Hui, GUO Ziye, PANG Lei, et al. Spatial shift phenomenon compensation for TomoSAR imaging using high-resolution TerraSAR-X data[J]. IEEE Access, 2021, 9: 13970-13980. DOI:10.1109/ACCESS.2021.3051236
[100]
WU Chunxiao, ZHANG Zenghui, CHEN Longyong, et al. Super-resolution for MIMO array SAR 3-D imaging based on compressive sensing and deep neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3109-3124. DOI:10.1109/JSTARS.2020.3000760
[101]
QUAN Yinghui, ZHANG Rui, LI Yachao, et al. Microwave correlation forward-looking super-resolution imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8326-8337. DOI:10.1109/TGRS.2020.3047018
[102]
LV Qi, DOU Yong, NIU Xin, et al. Urban land use and land cover classification using remotely sensed SAR data through deep belief networks[J]. Journal of Sensors, 2015, 2015: 1-10.
[103]
LI Lu, WANG Chao, ZHANG Hong, et al. Urban building change detection in SAR images using combined differential image and residual U-net network[J]. Remote Sensing, 2019, 11(9): 1091. DOI:10.3390/rs11091091
[104]
WU Wenjin, LI Xinwu, GUO Huadong, et al. Millimeter-wave ultrahigh resolution SAR image classification based on a new feature set[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1204-1208. DOI:10.1109/LGRS.2018.2830794
[105]
ZHU Xiao xiang, MONTAZERI S, GISINGER C, et al. Geodetic SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 18-35. DOI:10.1109/TGRS.2015.2448686
[106]
毕辉, 金双, 王潇, 等. 基于高分三号SAR数据的城市建筑高分辨率高维成像[J]. 雷达学报, 2022, 11(1): 40-51.
BI Hui, JIN Shuang, WANG Xiao, et al. High-resolution high-dimensional imaging of urban building based on Gao Fen-3 SAR data[J]. Journal of Radars, 2022, 11(1): 40-51.
[107]
MA Peifeng, LIN Hui. Robust detection of single and double persistent scatterers in urban built environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2124-2139. DOI:10.1109/TGRS.2015.2496193
[108]
WANG Zhigui, LIU Mei. Seasonal deformation and accelerated motion of infrastructure monitoring using a generalized differential SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 626-630. DOI:10.1109/LGRS.2019.2917324
[109]
D̓ANDRIMONT R, VERHEGGHEN A, LEMOINE G, et al. From parcel to continental scale-A first European crop type map based on Sentinel-1 and LUCAS Copernicus in situ observations[J]. Remote Sensing of Environment, 2021, 266: 112708. DOI:10.1016/j.rse.2021.112708
[110]
SANTORO M, CARTUS O, CARVALHAIS N, et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations[J]. Earth System Science Data, 2021, 13(8): 3927-3950. DOI:10.5194/essd-13-3927-2021
[111]
BARTSCH A, WIDHALM B, LEIBMAN M, et al. Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data[J]. Remote Sensing of Environment, 2020, 237: 111515. DOI:10.1016/j.rse.2019.111515
[112]
SOJA M J, QUEGAN S, D̓ALESSANDRO M M, et al. Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data[J]. Remote Sensing of Environment, 2021, 253: 112153. DOI:10.1016/j.rse.2020.112153
[113]
CARTUS O, SANTORO M. Exploring combinations of multi-temporal and multi-frequency radar backscatter observations to estimate above-ground biomass of tropical forest[J]. Remote Sensing of Environment, 2019, 232: 111313. DOI:10.1016/j.rse.2019.111313
[114]
LAL P, KUMAR A, SAIKIA P, et al. Effect of vegetation structure on above ground biomass in tropical deciduous forests of Central India[J]. Geocarto International, 2021, 1-17.
[115]
ZHANG Lu, LIU Huiying, GU Xinwei, et al. Sea ice classification using TerraSAR-X ScanSAR data with removal of scalloping and interscan banding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2): 589-598. DOI:10.1109/JSTARS.2018.2889798
[116]
LIANG Dong, GUO Huadong, ZHANG Lu, et al. Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine[J]. Remote Sensing of Environment, 2021, 256: 112318. DOI:10.1016/j.rse.2021.112318
[117]
LIANG Dong, GUO Huadong, ZHANG Lu, et al. Sentinel-1 EW mode dataset for Antarctica from 2014—2020 produced by the CAS Earth Cloud Service Platform[J]. Big Earth Data, 2021, 1-16.
[118]
ARTHUR J F, STOKES C, JAMIESON S, et al. Recent understanding of Antarctic supraglacial lakes using satellite remote sensing[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(6): 837-869. DOI:10.1177/0309133320916114
[119]
KING M D, HOWAT I M, CANDELA S G, et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat[J]. Communications Earth & Environment, 2020, 1(1): 1-7.
[120]
HOW P, MESSERLI A, MÄTZLER E, et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach[J]. Scientific reports, 2021, 11(1): 1-13. DOI:10.1038/s41598-020-79139-8
[121]
ZHAO Jingjing, LIANG Shuang, LI Xinwu, et al. Detection of surface crevasses over Antarctic ice shelves using SAR imagery and deep learning method[J]. Remote Sensing, 2022, 14(3): 487. DOI:10.3390/rs14030487
[122]
ZHANG Biao, MOUCHE A, LU Yiru, et al. A geophysical model function for wind speed retrieval from C-band HH-polarized synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1521-1525. DOI:10.1109/LGRS.2019.2905578
[123]
LU Yiru, ZHANG Biao, PERRIE W, et al. A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2417-2428. DOI:10.1109/JSTARS.2018.2836661
[124]
ZHANG Biao, LU Yiru, PERRIE W, et al. Compact polarimetry synthetic aperture radar ocean wind retrieval: model development and validation[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38(4): 747-757. DOI:10.1175/JTECH-D-20-0035.1
[125]
ELYOUNCHA A, ERIKSSON L E B, ROMEISER R, et al. Measurements of sea surface currents in the Baltic sea region using spaceborne along-track InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8584-8599. DOI:10.1109/TGRS.2019.2921705
[126]
LIU Yu, HE Yijun, ZHANG Biao. Ocean wave parameters retrieved directly from compact Polarimetric SAR data[J]. Acta Oceanologica Sinica, 2022, 41(4): 129-137. DOI:10.1007/s13131-021-1855-6
[127]
YANG Junxin, YUAN Xinzhe, HAN Bing, et al. Correction: Yang, J., et al. phase imbalance analysis of GF-3 along-track InSAR data and ocean current measurements. remote Sens. 2021, 13, 269[J]. Remote Sensing, 2021, 13(4): 540.
[128]
YAN He, HOU Qianru, JIN Guodong, et al. Velocity estimation of ocean surface currents in along-track InSAR system based on conditional generative adversarial networks[J]. Remote Sensing, 2021, 13(20): 4088. DOI:10.3390/rs13204088
[129]
RASHID M, GIERULL C H. Retrieval of ocean surface radial velocities with RADARSAT-2 along-track interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9597-9608. DOI:10.1109/JSTARS.2021.3110198
[130]
SAGANEITI L, AMATO F, NOLÈ G, et al. Early estimation of ground displacements and building damage after seismic events using SAR and LiDAR data: the case of the Amatrice earthquake in central Italy, on 24th August 2016[J]. International Journal of Disaster Risk Reduction, 2020, 51: 101924. DOI:10.1016/j.ijdrr.2020.101924
[131]
INTRIERI E, RASPINI F, FUMAGALLI A, et al. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data[J]. Landslides, 2018, 15(1): 123-133. DOI:10.1007/s10346-017-0915-7
[132]
BAN Y, ZHANG P, NASCETTI A, et al. Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning[J]. Scientific Reports, 2020, 10(1): 1-15. DOI:10.1038/s41598-019-56847-4
[133]
许小华, 黄萍, 黄诗峰, 等. 鄱阳湖洪涝灾害卫星雷达遥感应急监测应用[J]. 中国防汛抗旱, 2021, 31(4): 10-14.
XU Xiaohua, HUANG Ping, HUANG Shifeng, et al. Application of satellite radar remote sensing for emergency monitoring of flood disasters in Poyang Lake[J]. China Flood & Drought Management, 2021, 31(4): 10-14.
[134]
LIU Jihong, HU Jun, LI Zhiwei, et al. Three-dimensional surface displacements of the 8 January 2022 Mw6.7 Menyuan earthquake, China from sentinel-1 and ALOS-2 SAR observations[J]. Remote Sensing, 2022, 14(6): 1404. DOI:10.3390/rs14061404
[135]
胡羽丰, 李振洪, 王乐, 等. 2022年汤加火山喷发的综合遥感快速解译分析[J]. 武汉大学学报(信息科学版), 2022, 47(2): 242-251.
HU Yufeng, LI Zhenhong, WANG Le, et al. Rapid interpretation and analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha̓apai volcano with integrated remote sensing techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 242-251.
http://dx.doi.org/10.11947/j.AGCS.2022.20220098
中国科学技术协会主管、中国测绘地理信息学会主办。
0

文章信息

郭华东,吴文瑾,张珂,李新武
GUO Huadong, WU Wenjin, ZHANG Ke, LI Xinwu
新型SAR对地环境观测
New generation SAR for Earth environment observation
测绘学报,2022,51(6):862-872
Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 862-872
http://dx.doi.org/10.11947/j.AGCS.2022.20220098

文章历史

收稿日期:2022-02-16
修回日期:2022-04-15

相关文章

工作空间