[1] YAN Haowen, WEIBEL R, YANG Bisheng. A multi-parameter approach to automated building grouping and generalization[J]. Geoinformatica, 2008, 12(1): 73-89. [2] 程博艳, 刘强, 李小文. 一种建筑物群智能聚类法[J]. 测绘学报, 2013, 42(2): 290-294, 303. CHENG Boyan, LIU Qiang, LI Xiaowen. Intelligent building grouping using a self-organizing map[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 290-294, 303. [3] WANG Wanyi, DU Shihong, GUO Zhou, et al. Polygonal clustering analysis using multilevel graph-partition[J]. Transactions in GIS, 2015, 19(5): 716-736. [4] REGNAULD N. Contextual building typification in automated map generalization[J]. Algorithmica, 2001, 30(2): 312-333. [5] 艾廷华, 郭仁忠. 基于格式塔识别原则挖掘空间分布模式[J]. 测绘学报, 2007, 36(3): 302-308. AI Tinghua, GUO Renzhong. Polygon cluster pattern mining based on gestalt principles[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 302-308. [6] DENG Min, LIU Qiliang, CHENG Tao, et al. An adaptive spatial clustering algorithm based on delaunay triangulation[J]. Computers, Environment and Urban Systems, 2011, 35(4): 320-332. [7] WEI Zhiwei, GUO Qingsheng, WANG Lin, et al. On the spatial distribution of buildings for map generalization[J]. Cartography and Geographic Information Science, 2018, 45(6): 539-555. [8] ZHANG Xiang, AI Tinghua, STOTER J, et al. Building pattern recognition in topographic data: examples on collinear and curvilinear alignments[J]. GeoInformatica, 2013, 17(1): 1-33. [9] ZHANG Xiang, AI Tinghua, STOTER J, et al. Characterization and detection of building patterns in cartographic data: two algorithms[C]//Proceedings of the 14th International Symposium on Spatial Data Handling. Berlin: Springer, 2012: 93-107. [10] LI Zhilin, YAN Haowen, AI Tinghua. Automated building generalization based on urban morphology and Gestalt theory[J]. International Journal of Geographical Information Science, 2004, 18(5): 513-534. [11] ZHANG Liqiang, DENG Hao, CHEN Dong, et al. A spatial cognition-based urban building clustering approach and its applications[J]. International Journal of Geographical Information Science, 2013, 27(4): 721-740. [12] DENG Min, TANG Jianbo, LIU Qiliang, et al. Recognizing building groups for generalization: a comparative study[J]. Cartography and Geographic Information Science, 2018, 45(3): 187-204. [13] 刘慧敏, 邓敏, 樊子德, 等. 地图上居民地空间信息的特征度量法[J]. 测绘学报, 2014, 43(10): 1092-1098. DOI: 10.13485/j.cnki.11-2089.2014.0154. LIU Huimin, DENG Min, FAN Zide, et al. A characteristics-based approach to measuring spatial information content of the settlements in a map[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10): 1092-1098. DOI: 10.13485/j.cnki.11-2089.2014.0154. [14] LI Zhilin. Algorithmic foundation of multi-scale spatial representation[M]. Boca Raton: Taylor & Francis Group, 2007: 122-125. [15] CHEN Yimin, LIU Xiaoping, LI Xia, et al. Delineating urban functional areas with building-level social media data: a dynamic time warping (DTW) distance based k-medoids method[J]. Landscape and Urban Planning, 2017, 160: 48-60. [16] TSAI V J D. Delaunay triangulations in TIN creation: an overview and a linear-time algorithm[J]. International Journal of Geographical Information Systems, 1993, 7(6): 501-524. [17] WU Bin, YU Bailang, WU Qiusheng, et al. An extended minimum spanning tree method for characterizing local urban patterns[J]. International Journal of Geographical Information Science, 2018, 32(3): 450-475. [18] PRIM R C. Shortest connection networks and some generalizations[J]. The Bell System Technical Journal, 1957, 36(6): 1389-1401. [19] DU Shihong, ZHANG Fangli, ZHANG Xiuyuan. Semantic classification of urban buildings combining VHR image and GIS data: an improved random forest approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 107-119. [20] YUAN Jing, ZHENG Yu, XIE Xing. Discovering regions of different functions in a city using human mobility and POIs[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing: ACM, 2012: 186-194. [21] 刘菊, 许珺, 蔡玲, 等. 基于出租车用户出行的功能区识别[J]. 地球信息科学学报, 2018, 20(11): 1550-1561. LIU Ju, XU Jun, CAI Lin, et al. Identifying functional regions based on the spatio-temporal pattern of taxi trajectories[J]. Journal of Geo-information Science, 2018, 20(11): 1550-1561. [22] 谷岩岩, 焦利民, 董婷, 等. 基于多源数据的城市功能区识别及相互作用分析[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1113-1121. GU Yanyan, JIAO Limin, DONG Ting, et al. Spatial distribution and interaction analysis of urban functional areas based on multi-source data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1113-1121. [23] 蒋云良, 董墨萱, 范婧, 等. 基于POI数据的城市功能区识别方法研究[J]. 浙江师范大学学报(自然科学版), 2017, 40(4): 398-405. JIANG Yunliang, DONG Moxuan, FAN Jing, et al. Research on identifying urban regions of different functions based on POI data[J]. Journal of Zhejiang Normal University (Natural Sciences), 2017, 40(4): 398-405. [24] 刘启亮, 邓敏, 石岩, 等. 一种基于多约束的空间聚类方法[J]. 测绘学报, 2011, 40(4): 509-516. LIU Qiliang, DENG Min, SHI Yan, et al. A novel spatial clustering method based on multi-constraints[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 509-516. [25] 刘启亮. 自适应空间聚类方法研究[D]. 长沙: 中南大学, 2011. LIU Qiliang. A methodology of adaptive spatial clustering analysis[D]. Changsha: Central South University, 2011. |