测绘学报 ›› 2020, Vol. 49 ›› Issue (5): 656-666.doi: 10.11947/j.AGCS.2020.20190160

• 地图学与地理信息 • 上一篇    下一篇

顾及地理矢量场空间变化特征的多分辨率纹理可视化方法

尚戴雨1, 丁雨淋1, 朱庆1, 吴林宝2   

  1. 1. 西南交通大学地球科学与环境工程学院, 四川 成都 611756;
    2. 金华凯宝土地房地产评估测绘规划有限公司, 浙江 金华 321000
  • 收稿日期:2019-07-26 修回日期:2019-12-26 发布日期:2020-05-23
  • 通讯作者: 丁雨淋 E-mail:rainforests@126.com
  • 作者简介:尚戴雨(1996-),女,硕士生,研究方向为虚拟地理环境。E-mail:plain_observer@outlook.com
  • 基金资助:
    国家自然科学基金(41871291)

A multi-resolution texture-based visualization method for geographic vector fields by means of spatial variation features

SHANG Daiyu1, DING Yulin1, ZHU Qing1, WU Linbao2   

  1. 1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;
    2. Jinhua Kai Bao Land Real Estate Appraisal and Mapping Planning Co. Ltd., Jinhua 321000, China
  • Received:2019-07-26 Revised:2019-12-26 Published:2020-05-23
  • Supported by:
    The National Natural Science Foundation of China (No. 41871291)

摘要: 网络环境下海量、高维、动态、多尺度地理空间矢量场数据的在线高效可视化,一直是大规模密集矢量场数据集成与综合应用分析亟须解决的关键问题。地理矢量场数据蕴含大量非规则、多尺度、时空异质的变化特征与结构,传统矢量场纹理可视化方法,受全局统一采样密度的限制,存在典型的稠密遮挡、特征模糊的问题。针对上述问题,本文提出了一种顾及地理矢量场空间变化特征的多分辨率纹理可视化方法,引入复合信息熵定量显式描述矢量场的空间变化,以此驱动图像空间内多频噪声纹理生成、矢量场多分辨率纹理的构建与增强表达,有效克服传统纹理可视化方法的技术瓶颈。最后采用风场数据进行试验,验证了本文方法的可靠性与有效性。

关键词: 地理空间矢量场, 多分辨率, 空间变化特征, 信息熵, 纹理可视化

Abstract: How to visualize massive, high-dimensional, dynamic and multi-scale geospatial vector fields online under the network environment, has been the key issue for data integration and comprehensive analysis of massive and intensive vector fields. Geographic vector fields contain various irregular and multi-scale variation features and structures with prominent spatio-temporal heterogeneity. Due to global uniform sampling density, there are typical problems of occlusion and low feature discrimination in traditional texture-based vector field visualization. To overcome these shortcomings, this paper proposes a multi-resolution texture-based visualization method for geographic vector fields by means of spatial variation features. The proposed method uses composite information entropy as the description of spatial variation features, so as to drive the generation of feature-constrained multi-resolution noise, construction and enhancement of multi-resolution texture of vector fields in image space, which can effectively overcome the technical bottleneck of the traditional texture visualization method. Experimental results of the wind flow dataset prove the reliability and effectiveness of the method.

Key words: geospatial vector fields, multi-resolution, spatial variation features, information entropy, texture-based visualization

中图分类号: