[1] |
陈韬亦, 陈金勇, 赵和鹏. 基于Ecogniton的光学遥感图像舰船目标检测[J]. 无线电工程, 2013, 43(11):11-13, 22. CHEN Taoyi, CHEN Jinyong, ZHAO Hepeng. Ecognition-based ship detection on optical remote sensing images[J]. Radio Engineering of China, 2013, 43(11):11-13, 22.
|
[2] |
CRISP D J. A ship detection system for RADARSAT-2 dual-pol multi-look imagery implemented in the ADSS[C]//Proceedings of 2013 International Conference on Radar. Adelaide, SA, Australia:IEEE, 2016:318-323.
|
[3] |
CRISP David James. The state-of-the-art in ship detection in Synthetic Aperture Radar imagery[R]. Australian Government, Department of Defence,[s.n.], 2004.
|
[4] |
FINGAS M F, BROWN C E. Review of ship detection from airborne platforms[J]. Canadian Journal of Remote Sensing, 2001, 27(4):379-385.
|
[5] |
LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. An adaptive ship detection scheme for spaceborne SAR imagery[J]. Sensors,2016, 16(9):1345.
|
[6] |
WANG Chonglei, BI Fukun, ZHANG Weiping, et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4):529-533.
|
[7] |
伍广明, 陈奇, SHIBASAKI R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651. WU Guangming, CHEN Qi, SHIBASAKI R, et al. High precision building detection from aerial imagery using a U-net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872. DOI:10.11947/j.AGCS.2018.20170651.
|
[8] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal:MIT Press, 2015:91-99.
|
[9] |
LIU Wei, ANGUELOY D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Amsterdam:Springer, 2016:21-37.
|
[10] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE, 2016:779-788.
|
[11] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:Object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York,United States:Curran Associates Inc., 2016:379-387.
|
[12] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:936-944.
|
[13] |
KAREN Simonyan, ANDREW Zisserman. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representation. San-diego, California,USA:[s.n.],2014.
|
[14] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, United States:IEEE, 2016:770-778.
|
[15] |
ZHANG Ruiqing, YAO Jian, ZHANG Kao, et al. S-CNN ship detection from high-resolution remote sensing images[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7:423-430.
|
[16] |
LIU Yang, ZHANG Miaohui, XU Peng, et al. SAR ship detection using sea-land segmentation-based convolutional neural network[C]//Proceedings of International Workshop on Remote Sensing with Intelligent Processing. Shanghai, China:IEEE, 2017:1-4.
|
[17] |
KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//Proceedings of International Workshop on Remote Sensing with Intelligent Processing. Shanghai, China:IEEE, 2017:1-4.
|
[18] |
KANG Miao, JI Kefeng, LENG Xiangguang, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8):860.
|
[19] |
TANG Jiexiong, DENG Chenwei, HUANG Guangbin, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1174-1185.
|
[20] |
高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12):2812-2819. GAO Xin, LI Hui, ZHANG Yi, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12):2812-2819.
|
[21] |
邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595. DENG Zhipeng, SUN Hao, LEI Lin, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1216-1227. DOI:10.11947/j.AGCS.2018.20170595.
|
[22] |
DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:764-773.
|
[23] |
YANG Xue, SUN Hao, FU Kun, et al. Automatic ship detection in remote sensing images from Google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1):132.
|
[24] |
YANG Xue, SUN Hao, SUN Xian, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6:50839-50849.
|
[25] |
CHEN Chaoyue, GONG Weiguo, CHEN Yongliang, et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019, 11(3):339.
|
[26] |
ABADI Martin, BARHAM Paul, CHEN Jianmin, et al. Tensorflow:large-scale machine learning on heterogeneous distributed systems[C]//Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation (OSDI'16), USENIX Association, USA:[s.n.], 265-283.
|
[27] |
XIA Guisong, BAI Xiang, DING Jian, et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:3974-3983.
|
[28] |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:761-769.
|
[29] |
POWERS D M W. Evaluation:From precision, recall and f-measure to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2011, 2(1):37-63.
|