测绘学报 ›› 2021, Vol. 50 ›› Issue (6): 833-846.doi: 10.11947/j.AGCS.2021.20200305

• 摄影测量学与遥感 • 上一篇    下一篇

线特征约束的建筑物密集匹配边缘全局优化方法

巩丹超1,2, 韩轶龙3, 黄旭4   

  1. 1. 西安测绘研究所, 陕西 西安 710054;
    2. 地理信息工程国家重点实验室, 陕西 西安 710054;
    3. 武汉大学遥感信息工程学院, 湖北 武汉 430079;
    4. 武汉市工程科学技术研究院, 湖北 武汉 430019
  • 收稿日期:2020-07-15 修回日期:2021-04-22 发布日期:2021-06-28
  • 通讯作者: 黄旭 E-mail:huangxurs@whu.edu.cn
  • 作者简介:巩丹超(1975—),男,博士,研究员,博士生导师,主要从事卫星摄影测量及遥感影像处理与分析研究。E-mail:sx_gdch@sina.com
  • 基金资助:
    国家自然科学基金(41701540)

Global refinement of building boundary with line feature constraints for stereo dense image matching

GONG Danchao1,2, HAN Yilong3, HUANG Xu4   

  1. 1. Xi'an Institute of Surveying and Mapping, Xi'an 710054, China;
    2. State Key Laboratory of Geo-information Engineering, Xi'an 710054, China;
    3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
    4. Wuhan Engineering Science & Technology Institute, Wuhan 430019, China
  • Received:2020-07-15 Revised:2021-04-22 Published:2021-06-28
  • Supported by:
    The National Natural Science Foundation of China (No. 41701540)

摘要: 立体影像密集匹配技术常用固定窗口来寻找同名点,并根据同名光线对对相交的原理,计算出目标的三维信息,具有成本低、分辨率高、重建范围大等优势。但是,在建筑物边缘区域,由于遮挡等因素影响,固定匹配窗口的匹配精度往往较低,且会对建筑物边缘进行一定程度上的外扩。为了获取高精度的建筑物边缘重建结果,本文提出了一种基于线特征的建筑物边缘全局优化方法。该方法首先将密集匹配结果中的视差/高程阶跃区域的线特征定义为建筑物的边缘,然后假设局部灰度相近的像素,其视差/高程往往也是相近的约束,来全局优化每一条建筑物边缘。该算法的主要贡献在于,将建筑物边缘优化问题,转化为一个新的全局能量函数的最优解计算问题,能够在优化建筑物边缘的同时,保留建筑物附近的地形地貌,不仅解决了局部边缘锐化算子无法解决较大边缘误匹配的问题,而且解决了最新的缓冲区全局优化算法强行抹平地面的问题。本文采用航空数据集和卫星数据集进行试验。试验结果表明:本文算法明显优于目前局部边缘锐化算子和基于平面拟合的边缘优化算法,能够有效减少建筑物边缘的误匹配像素。因此,本文所提出的基于直线约束的建筑物边缘全局优化方法可以用于一些三维重建场景,如:虚拟现实、智慧城市、建筑物提取等。

关键词: 线特征检测算子, 图割优化, 立体影像密集匹配, 建筑物边缘优化, 基于图像引导滤波

Abstract: Dense stereo image matching is a key technique to find correspondences through fixed matching windows and then compute 3D points through the triangulation measure. Its advantages of low cost, high point density and large measure area have fueled several smart 3D applications. However, due to occlusions in building boundaries, the fixed matching window often fattens the boundaries to a certain extend, which greatly reduces the matching accuracy in building boundaries. To achieve higher-accuracy matching result in building boundaries, this paper proposes a global building boundary refinement method based on line features, which firstly extracts line features in disparity/elevation jumps as building boundaries and then globally refines these boundaries under the basic assumption that pixels with similar intensities should have the similar disparities. The main contribution of the algorithm is to formulate the building boundary refinement problem as the optimization of a new global energy function, which is able to sharpen boundaries as well as keep details around boundaries. Compared with some state-of-the-art boundary refinement algorithms (e.g. local sharpen operators and the plane based boundary refinement), the proposed method is capable of addressing the issues they met, i.e. the incapacity to correct large errors or the over smoothness around boundaries. Experiments on aerial datasets and satellite datasets show that the proposed method is superior to two other popular boundary sharper operators and a state-of-the-art plane based boundary refinement method, and can efficiently reduce the errors in boundaries. Therefore, our method can be applied in several 3D applications, e.g. virtual reality, smart city, and building extraction.

Key words: line segment detector, graph cuts optimization, dense stereo image matching, building boundary refinement, guided image filtering

中图分类号: