测绘学报 ›› 2021, Vol. 50 ›› Issue (7): 930-938.doi: 10.11947/j.AGCS.2021.20200017

• 摄影测量学与遥感 • 上一篇    下一篇

高分影像场景分类的半监督深度卷积神经网络学习方法

杨秋莲, 刘艳飞, 丁乐乐, 孟凡效   

  1. 天津市勘察设计院集团有限公司, 天津 300000
  • 收稿日期:2020-02-03 修回日期:2021-05-14 发布日期:2021-08-13
  • 通讯作者: 刘艳飞 E-mail:yanfeiliu@whu.edu.cn
  • 作者简介:杨秋莲(1975-),女,硕士,高级工程师,研究方向为工程测量,遥感影像智能解译。E-mail:971760979@qq.com
  • 基金资助:
    天津市重点研发计划科技支撑重点项目(18YFZCSF00620);天津市重点研发计划院市合作项目(18YFYSZC00120)

High spatial resolution imagery scene classification based on semi-supervised CNNs

YANG Qiulian, LIU Yanfei, DING Lele, MENG Fanxiao   

  1. Tianjin Survey Design Institute Group Co., Ltd., Tianjin 300000, China
  • Received:2020-02-03 Revised:2021-05-14 Published:2021-08-13
  • Supported by:
    The Key Science and Technology Support Project of Key Research and Development Program of Tianjin (No. 18YFZCSF00620);The CAS-Tianjin Collaborative Project of Key Research and Development Program of Tianjin (No. 18YFYSZC00120)

摘要: 传统基于深度卷积神经网络的场景分类方法往往需要大量标记样本用于模型的参数训练,在标记训练集数量有限的情况下,学习得到的特征泛化能力降低。针对这一问题,本文提出了高分影像分类的半监督深度卷积神经网络学习方法(3sCNN),采用自学习半监督策略,训练阶段不断增加训练样本:首先,通过有限的标记数据对深度网络进行初步训练;然后,利用经过初步训练的网络对未标记数据进行预测,得到未标记样本的预测标签及其对应的置信度;最后,将具有高置信度的未标记样本作为真实标记数据加入到训练集中,继续对网络进行训练并重复上述过程。为验证算法的有效性,本文在3个常用数据集上进行试验,试验结果证明本文算法可以有效提高有限样本下高分影像场景分类精度。

关键词: 卷积神经网络, 高分影像, 半监督, 分类

Abstract: The large amount of labeled dataset is always required to train the deep convolutional neural networks (CNNs) for high spatial resolution (HSR) imagery scene classification. However, the generalization of the learned deep features is decayed when limited labeled data is available. To solve this problem, the scene classification based on semi-supervised CNNs (3sCNN) is proposed. In the proposed method, the labeled data is first used to train the model and then the prediction label and confidence of the unlabeled data is obtained with the trained model. Finally, the unlabeled data with high confidence is considered as the labeled data to train the network again and the progress described above is repeated. To demonstrate the effectiveness of the proposed method, the experiments on three datasets are performed. The results show that the proposed method can effectively improve the classification.

Key words: convolutional neural networks, high spatial resolution imagery, semi-supervised, classification

中图分类号: