测绘学报 ›› 2021, Vol. 50 ›› Issue (9): 1266-1274.doi: 10.11947/j.AGCS.2021.20210010

• 地图学与地理信息 • 上一篇    下一篇

多尺度GTWR城市住宅价格建模与分析

叶健, 胡鑫, 徐鸿蒙, 陈曦, 吕琦   

  1. 西南交通大学地球科学与环境工程学院, 四川 成都 611756
  • 收稿日期:2020-01-05 修回日期:2020-04-27 发布日期:2021-10-09
  • 作者简介:叶健(1980-),男,博士,讲师,研究方向为地理信息科学与虚拟地理环境。E-mail:yejian518@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(41771419);西南交通大学大学生科研训练计划(191513)

Modeling and analysis of urban housing price models based on multiscale geographically and temporally weighted regression

YE Jian, HU Xin, XU Hongmeng, CHEN Xi, Lü Qi   

  1. Faculty of Geosciences and Environmental Engineering of Southwest Jiaotong University, Chengdu 611756, China
  • Received:2020-01-05 Revised:2020-04-27 Published:2021-10-09
  • Supported by:
    The National Natural Sciences Foundation of China (No. 41771419); The Student Research Training Program of Southwest Jiaotong University (No.191513)

摘要: 尺度、时间、空间距离一直是制约地理时空加权回归模型求解精度的关键。本文基于欧氏距离约束和路网距离约束,将多尺度扩展到时空地理加权回归方法的建模中,以检验多尺度GTWR模型的改进性能,同时验证路网距离约束在多尺度GTWR模型中的优越性。以2015—2018年成都市主城区商品房社区作为案例对象,将多尺度GTWR与GTWR在拟合优度(R2)、残差平方和(RSS)及AIC等方面进行比较。试验结果表明,与GTWR相比,多尺度GTWR对影响住宅价格的自变量提供了更有效的解释,同时路网距离的使用也提高了模型的合理性。在基于欧氏距离约束和路网距离约束方面拟合优度分别提升了0.123和0.208,RSS和AIC值得到了有效的降低。相比于使用欧氏距离约束的GTWR与多尺度GTWR模型,路网距离约束的GTWR (RD)模型的拟合优度提高了0.007,多尺度GTWR (RD)模型的拟合优度提高了0.092,基于路网距离的计算结果进一步证实了多尺度GTWR模型的正确性,也进一步证明了综合考虑尺度、时空距离后的多尺度GTWR具有很好的通用性。

关键词: 时空多尺度, 带宽, 路网距离, GTWR, 住宅价格

Abstract: Scale, time, and spatial distance have always been the key to restricting the accuracy of geographically and temporally weighted regression (GTWR) models. Based on the Euclidean distance and road network distance constraints, this research extends the spatio-temporal multiscale to the modeling of geographically and temporally weighted regression methods to test the improved performance of the multiscale GTWR model and to verify the superiority of the road network distance constraint in the multiscale GTWR model. Herein, the commercial housing communities during the time period of 2015—2018 in the main urban area of Chengdu are considered as the case object, and the multiscale GTWR and GTWR are compared in terms of goodness of fit, residual sum of squares (RSS), and Akaike information criterion (AIC). Experimental results show that compared with GTWR, the multiscale GTWR provides a more effective explanation for the independent variables affecting housing prices, and improves the rationality of the model by using the road network distance.The goodness of fit based on the Euclidean distance and road network distance constraints has been improved by 0.123 and 0.208, respectively, and the RSS and AIC have been effectively reduced. Compared with the GTWR and multiscale GTWR models based on the Euclidean distance constraint, the goodness of fit of both GTWR and multiscale GTWR models based on the road network distance constraint has been improved by 0.007 and 0.092, respectively. Furthermore, the calculation results based on the road network distance confirm the correctness of the multiscale GTWR model and prove that the multiscale GTWR model exhibiting comprehensive consideration of scale and spatio-temporal distance has good versatility. Results obtained herein are expected to provide an important reference for urban planning in spatial-temporal multiscale modeling.

Key words: spatio-temporal multiscale, bandwidth, road network distance, GTWR, house prices

中图分类号: