测绘学报 ›› 2021, Vol. 50 ›› Issue (11): 1558-1573.doi: 10.11947/j.AGCS.2021.20210246

• 智能驾驶环境感知 • 上一篇    下一篇

融合点云和多视图的车载激光点云路侧多目标识别

方莉娜1, 沈贵熙1, 游志龙1, 郭迎亚2, 付化胜3, 赵志远1, 陈崇成1   

  1. 1. 福州大学数字中国研究院(福建), 福建 福州 350002;
    2. 福州大学计算机与大数据学院, 福建 福州 350002;
    3. 福建省水利水电勘测设计研究院, 福建 福州 350002
  • 收稿日期:2021-05-11 修回日期:2021-09-27 发布日期:2021-12-07
  • 通讯作者: 郭迎亚 E-mail:guoyy@fzu.edu.cn
  • 作者简介:方莉娜(1983—),女,博士,助理研究员,研究方向为激光雷达数据处理与三维重建。
  • 基金资助:
    国家自然科学基金(42071446;61801121);福建省对外合作项目(202010007)

A joint network of point cloud and multiple views for roadside objects recognition from mobile laser point clouds

FANG Lina1, SHEN Guixi1, YOU Zhilong1, GUO Yingya2, FU Huasheng3, ZHAO Zhiyuan1, CHEN Chongcheng1   

  1. 1. Academy of Digital China(Fujian), Fuzhou University, Fuzhou 350002, China;
    2. College of Computer and Data Science, Fuzhou University, Fuzhou 350002, China;
    3. Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, Fuzhou 350002, China
  • Received:2021-05-11 Revised:2021-09-27 Published:2021-12-07
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42071446;61801121);Foreign Cooperation Projects of Fujian Province (No. 202010007)

摘要: 城市环境中的行道树、车辆、杆状交通设施是重要的交通地物,也是智能交通,导航与位置服务,自动驾驶和高精地图等行业应用的核心要素。为了准确识别这些路侧目标,本文提出一种融合点云和多视角图像的深度学习模型PGVNet(point-group-view network),充分利用目标点云数据中空间几何信息及其多视角图像中高级全局特征提升路侧行道树、车辆和杆状设施的分类精度。为了减少视图间的冗余信息并增强显著视图特征,PGVNet模型利用预训练的VGG网络提取多视图特征,对其进行分组赋权获取最优视图特征;采用嵌入注意力机制的融合策略,利用最优视图特征动态调整PGVNet模型对点云不同局部关系的注意力度,学习不同路侧目标的多层次、多尺度显著特征,实现行道树、车辆和杆状交通设施的精确分类。试验采用5份不同车载激光扫描系统获取的不同城市场景数据验证本文方法的有效性,其中行道树、车辆及杆状交通设施分类结果中的准确率、召回率、精度和F1指数分别达(99.19%、94.27%、93.58%、96.63%);(94.20%、97.56%、92.02%、95.68%);(91.48%、98.61%、90.39%、94.87%)。结果表明,本文方法融合多视图全局信息和点云局部结构特征可以有效区分城市场景中的行道树、车辆和杆状交通设施,可为高精度地图中要素构建与矢量化提供数据支撑。

关键词: 车载激光扫描系统, 点云分类, 多视角图像, 深度学习, 注意力机制

Abstract: Accurately identifying roadside objects like trees, cars, and traffic poles from mobile LiDAR point clouds is of great significance for some applications such as intelligent traffic systems, navigation and location services, autonomous driving, and high precision map. In the paper, we proposed a point-group-view network (PGVNet) to classify the roadside objects into trees, cars, traffic poles, and others, which utilize and fuse the advanced global features of multi-view images and the spatial geometry information of point cloud. To reduce redundant information between similar views and highlight salient view features, the PGVNet model employs a hierarchical view-group-shape architecture to split all views into different groups according to their discriminative level, which uses the pre-trained VGG network as the bone network. In view-group-shape architecture, global-level significant features are further generated from group descriptors with their weights. Moreover, an attention-guided fusion network is used to fuse the global features from multi-view images and local geometric features from point clouds. In particular, the global advanced features from multi-view images are quantified and leveraged as the attention mask to further refine the intrinsic correlation and discriminability of the local geometric features from point clouds, which contributions to recognize the roadside objects. We have evaluated the proposed method on five different mobile LiDAR point cloud data. Five test datasets of different urban scenes by different mobile laser scanning systems are used to evaluate the validities of the proposed method. Four accuracy evaluation metrics precision, recall, quality and Fscore of trees, cars and traffic poles on the selected testing datasets achieve (99.19%,94.27%,93.58%,96.63%),(94.20%,97.56%,92.02%,95.68%),(91.48%,98.61%,90.39%,94.87%), respectively. Experimental results and comparisons with state-of-the-art methods demonstrate that the PGVNet model is available to effectively identify roadside objects from the mobile LiDAR point cloud, which can provide data support for elements construction and vectorization in high precision map applications.

Key words: mobile laser scanning systems, point cloud classification, multi-view, deep learning, attention mechanism

中图分类号: