测绘学报 ›› 2022, Vol. 51 ›› Issue (4): 556-567.doi: 10.11947/j.AGCS.2022.20220019
刘春1, 贾守军1, 吴杭彬1, 黄炜1, 郑宁2, 艾克然木·艾克拜尔1
收稿日期:
2021-11-17
修回日期:
2022-01-26
发布日期:
2022-04-24
通讯作者:
贾守军
E-mail:2010203@tongji.edu.cn
作者简介:
刘春(1973-),男,教授,博士生导师,研究方向为新型遥感的感知及数据处理。.E-mail:liuchun@tongji.edu.cn
基金资助:
LIU Chun1, JIA Shoujun1, WU Hangbin1, HUANG Wei1, ZHENG Ning2, AKRAM Akbar1
Received:
2021-11-17
Revised:
2022-01-26
Published:
2022-04-24
Supported by:
摘要: 随着传感器技术和观测平台的迅速发展,点云大数据作为新型遥感的主要数据形式,已经逐渐成为场景感知的重要信息载体,并在地质灾害态势感知、自然资源定量调查和道路交通安全服务等国家重大战略需求中发挥了越来越显著的作用。与此同时,点云观测装备和国家重大战略需求的双重驱动促使空间场景从感知迈向了认知,也对认知处理的算法和算力提出了新的要求。为此,本文以点云场景认知的基本框架为线索,分析了多源点云耦合观测的研究现状,总结了点云场景认知处理的关键进展及其在国家重大战略需求中的典型应用,并凝练了点云场景认知当前面临的主要问题。在此基础上,本文聚焦点云场景认知的前沿挑战,避开传统欧氏空间而转到高维张量流形空间进行点云数据处理,提出了“泛化点云”的科学概念和技术框架,为突破点云场景认知处理的算法和算力提供研究思路。
中图分类号:
刘春, 贾守军, 吴杭彬, 黄炜, 郑宁, 艾克然木·艾克拜尔. 点云场景认知模式——泛化点云[J]. 测绘学报, 2022, 51(4): 556-567.
LIU Chun, JIA Shoujun, WU Hangbin, HUANG Wei, ZHENG Ning, AKRAM Akbar. Scene cognition pattern of point cloud-generalization point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 556-567.
[1] 杨必胜,梁福逊,黄荣刚.三维激光扫描点云数据处理研究进展、挑战与趋势[J].测绘学报,2017,46(10):1509-1516. DOI:10.11947/j. AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017,46 (10): 1509-1516. DOI:10.11947/j.AGCS.2017.20170351. [2] HUSSAIN R, ZEADALLY S. Autonomous cars: research results, issues, and future challenges [J]. IEEE Communications Surveys and Tutorials, 2018, 21(2): 1275-1313. DOI: 10.1109/COMST.2018.2869360. [3] SVNDERHAUF N, PHAM T T, LATIF Y, et al. Meaningful maps with object-oriented semantic mapping[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [S.l.]: IEEE, 2017: 5079-5085. [4] 陈军,刘万增,武吴,等.智能化测绘的基本问题与发展方向[J].测绘学报, 2021, 50(8): 995-1005. DOI: 10.11947/j. AGCS.2021.20210235. CHEN Jun, LIU Wanzeng, WU Wu, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021,50(8):995-1005. DOI:10.11947/j. AGCS.2021.20210235. [5] 宁津生.测绘科学与技术转型升级发展战略研究[J].武汉大学学报(信息科学版),2019,44(1):1-9. DOI:10.13203/j.whugis20180477. NING Jinsheng. Research on the development strategy of surveying and mapping science and technology transformation and upgrading [J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 1-9.DOI:10.13203/j.whugis20180477. [6] 李德仁.展望大数据时代的地球空间信息学[J].测绘学报,2016,45(4):379-384. DOI:10. 11947/j. AGCS. 2016. 20160057. LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45 (4):379-384. DOI: 10. 11947/j. AGCS. 2016. 20160057. [7] 蒋赫敏,钟若飞,谢东海.智能手机移动测量方法的设计与实现[J].测绘通报,2019(6):71-76. DOI: 10.13474/j.cnki.11-2246.2019.0187. JIANG Hemin, ZHONG Ruofei, XIE Donghai. Design and implementation of mobile measurement method for smartphone [J]. Bulletin of Surveying and Mapping, 2019(6):71-76. DOI: 10.13474/j.cnki.11-2246.2019.0187. [8] ZHANG Meina, LÜ Xiaolan, QIU Wei, et al. Calculation method of leaf area density based on three-dimensional laser point cloud[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017. DOI: 10.6041/j.issn.1000-1298.2017.11.021. [9] 卢昊,庞勇,李增元,等.全波形机载激光雷达绝对辐射定标与不确定性分析[J]. 遥感学报, 2020,24(11): 1353-1362. DOI: 10.11834/jrs.20208376. LU Hao, PANG Yong, LI Zengyuan, et al. Uncertainty analysis of the absolute radiometric calibration of full waveform airborne LiDAR[J]. Journal of Remote Sensing, 2020,24(11): 1353-1362. DOI: 10.11834/jrs.20208376. [10] 张宗华,刘巍,刘国栋,等.三维视觉测量技术及应用进展[J].中国图象图形学报, 2021,26 (6):1483-1502. DOI:10. 11834/jig. 200841. ZHANG Zonghua, LIU Wei, LIU Guodong, et al. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 2021,26 (6):1483-1502. DOI:10. 11834/jig. 200841. [11] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of lidar data and building object detection in urban areas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 87(1):152-165. DOI:10.1016/j.isprsjprs.2013.11.001. [12] 郝婧蕾,赵永强,赵海盟,等.偏振多光谱机器视觉的高反光无纹理目标三维重构方法[J].测绘学报,2018,47(6):816-824.DOI: 10.11947/j.AGCS.2018.20170624. HAO Jinglei, ZHAO Yongqiang, ZHAO Haimeng, et al. 3D reconstruction of high-reflective and textureless targets based on multispectral polarization and machine vision[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (6): 816-824. DOI: 10.11947/j. AGCS.2018.20170624. [13] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 573-580. DOI: 10.1109/IROS.2012.6385773. [14] 周建丰,邓学良.一种多线结构光合成编码的三维重建方法[J].现代计算机,2021,27(23):119-123. DOI:10.3969/j.issn.1007-1423.2021.23.021. ZHOU Jianfeng, DENG Xueliang. A three-dimensional reconstruction method for photo synthetic coding of multi-line structure [J]. Modern Computer, 2021,27(23):119-123. DOI:10.3969/j.issn.1007-1423.2021.23.021. [15] LAFOREST L, HASHEMINASAB S M, ZHOU T, et al. New strategies for time delay estimation during system calibration for UAV-based GNSS/INS-assisted imaging systems[J]. Remote Sensing, 2019, 11(15):1811. DOI:10.3390/rs11151811. [16] LI Jianping, YANG Bisheng, CHEN Chi, et al. NRLI-UAV: non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:123-145. DOI:10.1016/j.isprsjprs.2019.10.009. [17] 郭晨,许强,董秀军,等.复杂山区地质灾害机载激光雷达识别研究[J].武汉大学学报(信息科学版), 2021, 46(10): 1538-1547. DOI:10.13203/j. whugis20210121. GUO Chen, XU Qiang, DONG Xiujun, et al. Geohazard recognition by airborme LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547. DOI: 10.13203/j. whugis20210121. [18] 曾伟生,孙乡楠,王六如,等.基于机载激光雷达数据的森林蓄积量模型研建[J].林业科学,2021,57(2):31-38. DOI: 10. 11707 /j.1001-7488. 20210204. ZENG Weisheng, SUN Xiangnan, WANG Liuru, et al. Development of forest stand volume models based on airborne laser scanning data[J]. Scientia Silvae Sinicae, 2021,57(2):31-38. DOI: 10. 11707 /j.1001-7488. 20210204. [19] 刘经南,吴杭彬,郭迟,等.高精度道路导航地图的进展与思考[J].中国工程科学,2018,20(2):99-105. DOI: 10.15302/J-SSCAE-2018.02.015. LIU Jingnan, WU Hangbin, GUO Chi, et al. Progress and consideration of high precision road navigation map[J]. Strategic Study of CAE, 2018,20(2):99-105. DOI: 10.15302/J-SSCAE-2018.02.015. [20] 李德仁,张良培,夏桂松.遥感大数据自动分析与数据挖掘[J].测绘学报,2014,43(12): 1211-1216. DOI: 10. 13485/j. cnki. 11-2089. 2014. 0187. LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(12):1211-1216. DOI: 10. 13485/j. cnki. 11-2089. 2014. 0187. [21] XIE Y, TIAN J, ZHU X X. Linking points with labels in 3D: a review of point cloud semantic segmentation [J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59. DOI: 10.1109/MGRS.2019.2937630. [22] 郭华东.科学大数据——国家大数据战略的基石[J].中国科学院院刊, 2018, 33(8): 768-773. DOI: 10.16418/j.issn.1000-3045.2018.08.001. GUO Huadong. Scientific big data—a footstone of national strategy for big data[J]. Bulletin of Chinese Academy of Sciences, 2018,33(8):768-773. DOI: 10.16418/j.issn.1000-3045.2018.08.001. [23] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 4558-4567. DOI: 10.1109/CVPR.2018.00479. [24] ZHANG Jiaying, ZHAO Xiaoli, CHEN Zheng, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019(7):179118-179133. DOI:10.1109/ACCESS.2019.2958671. [25] 李勇, 佟国峰, 杨景超, 等. 三维点云场景数据获取及其场景理解关键技术综述[J]. 激光与光电子学进展, 2019, 56(4): 21-34. DOI:10.3788/LOP56.040002. LI Yong, TONG Guofeng, YANG Jingchao, et al. 3D point cloud scene data acquisition and its key technologies for scene understanding[J]. Laser & Optoelectronics Progress, 2019, 56(4): 21-34. DOI:10.3788/LOP56.040002. [26] 郭王,程效军.基于激光强度分类的机载与地面激光雷达点云配准方法[J].激光与光电子学进展,2018,55(6):409-416. DOI:10. 3788/LOP55. 062803. GUO Wang, CHENG Xiaojun. Registration method for airborne and terrestrial light detection and ranging point cloud based on laser intensity classification[J]. Laser & Optoelectronics Progress, 2018,55(6):409-416. DOI:10. 3788/LOP55. 062803. [27] 龙川,苟永刚,明镜,等.车载移动测量系统研制与应用实践[J].测绘通报, 2021(4): 120-125. DOI: 10.13474/j.cnki.11-2246.2021.0122. LONG Chuan, GOU Yonggang, MING Jing, et al. Development and application of vehicle mobile mapping system[J]. Bulletin of Surveying and Mapping, 2021(4): 120-125. DOI: 10.13474/j.cnki.11-2246.2021.0122. [28] BRAUN A, TUTTAS S, BORRMANN A, et al. Improving progress monitoring by fusing point clouds, semantic data and computer vision[J]. Automation in Construction, 2020, 116(C). DOI:10.1016/j.autcon.2020.103210. [29] KIM S, KIM S, LEE D E. Sustainable application of hybrid point cloud and BIM method for tracking construction progress[J]. Sustainability, 2020, 12. DOI:10.3390/su12104106. [30] 袁修孝.POS辅助光束法区域网平差[J].测绘学报,2008,37(3):342-348. YUAN Xiuxiao. POS-supported bundle block adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2008,37(3):342-348. [31] JIA Shoujun, LIU Chun, WU Hangbin, et al. A cross-correction LiDAR SLAM method for high-accuracy 2D mapping of problematic scenario[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171(5):367-384. DOI:10.1016/j.isprsjprs.2020.11.004. [32] 杨必胜,董震.点云智能研究进展与趋势[J].测绘学报,2019,48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(12): 1575-1585. DOI:10.11947/j.AGCS.2019.20190465. [33] CHEN Y, GÉRARD M. Object modeling by registration of multiple range images[J]. Image and Vision Computing, 2002, 10(3):145-155. DOI:10.1016/0262-8856(92)90066-C. [34] JI Shijun, REN Yongcong, ZHAO Ji, et al. An improved method for registration of point cloud[J]. Optik-International Journal for Light and Electron Optics, 2017:S0030402617300517. DOI:10.1016/j.ijleo.2017.01.041. [35] BESL P J, MCKAY H D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(2):239-256. DOI:10.1109/34.121791. [36] CHETVERIKOV D, STEPANOV D, KRSEK P. Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm[J]. Image and Vision Computing, 2005, 23(3):299-309. DOI:10.1016/j.imavis.2004.05.007. [37] ZASS R, SHASHUA A. Probabilistic graph and hypergraph matching[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2008: 1-8. DOI:10.1109/CVPR.2008.4587500. [38] EVANGELIDIS G D, KOUNADES-BASTIAN D, HORAUD R, et al. A generative model for the joint registration of multiple point sets[C]//Proceedings of 2014 European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2014, 109-122. DOI:10.1007/978-3-319-10584-0_8. [39] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. [S.l.]: IEEE, 2009: 3212-3217. [40] TOMBARI F, SALTI S, D STEFANO L. Unique signatures of histograms for local surface description[C]//Proceedings of 2010 European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2010: 356-369. DOI:10.1007/978-3-642-15558-1_26. [41] LIU Y, KONG D, ZHAO D, et al. A point cloud registration algorithm based on feature extraction and matching[J]. Mathematical Problems in Engineering, 2018, 2018(PT.17):1-9. DOI:10.1155/2018/7352691. [42] ZAN G, ZHOU C, WEGNER J D, et al. The perfect match: 3D point cloud matching with smoothed densities[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beack, CA, USA: IEEE, 2019, 5545-5554. DOI: 10.1109/CVPR.2019.00569. [43] YUAN W A, BY A, YC B, et al. JoKDNet: a joint keypoint detection and description network for large-scale outdoor TLS point clouds registration[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,104(15)102534. DOI:10.1016/j.jag.2021.102534. [44] MENG D, Du S, ZHU J, et al. Robust registration of partially overlapping point sets via genetic algorithm with growth operator[J]. Iet Image Processing, 2014, 8(10):582-590. DOI:10.1049/iet-ipr.2013.0545. [45] LEI H, JIANG G, QUAN L. Fast descriptors and correspondence propagation for robust global point cloud registration[J]. IEEE Transactions on Image Processing, 2017, 26(8):3614-3623. DOI:10.1109/TIP.2017.2700727. [46] XIN M, LI B, WEI X, et al. Rapid registration method by using partial 3D point clouds[J]. Optik-International Journal for Light and Electron Optics, 2021(2):167764. DOI:10.1016/j.ijleo.2021.167764. [47] WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Computers & Graphics, 2015, 49:47-57. DOI:10.1016/j.cag.2015.01.006. [48] LI H X, XU L D. Feature space theory-a mathematical foundation for data mining [J]. Knowledge-Based Systems, 2001, 14(5-6): 253-257. DOI:10.1016/S0950-7051(01)00103-4. [49] WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105(7): 286-304. DOI:10.1016/j.isprsjprs.2015.01.016. [50] BO G, HUANG X, FAN Z, et al. Classification of airborne laser scanning data using JointBoost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100: 71-83. DOI:10.1016/j.isprsjprs.2014.04.015. [51] WEINMANN M, JUTZI B, MALLET C. Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, II-3: 181-188. DOI:10.5194/isprsannals-II-3-181-2014. [52] SALTI S, TOMBAI F, STEFANO L D. SHOT: unique signatures of histograms for surface and texture description [J]. Computer Vision and Image Understanding, 2014, 125(1): 251-264. DOI:10.1016/j.cviu.2014.04.011. [53] LIU F C, WANG S J, WANG J R, et al. 3D model retrieval based on fuzzy correspondences and hybrid shape features[C]//Proceedings of 2016 International Conference on Virtual Reality and Visualization (ICVRV). [S.l.]: IEEE, 2016: 358-363. DOI: 10.1109/ICVRV.2016.67. [54] EITZ M, RICHTER R, BOUBEKEUR T, et al. Sketch-based shape retrieval[J]. Acm Transactions on Graphics, 2012, 31(4):1-10. DOI:10.1145/2185520.2185527. [55] GUO Y, SOHEL F, BENNAMOUN M, et al. Rotational projection statistics for 3D local surface description and object recognition[J]. International Journal of Computer Vision, 2013, 105(1):63-86. DOI: 10.1007/s11263-013-0627-y. [56] DONG Zhen, YANG Bisheng, LIU Yuan, et al. A novel binary shape context for 3D local surface description[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 431-452. DOI:10.1016/j.isprsjprs.2017.06.012. [57] KHOURY M, ZHOU Q Y, KOLTUN V. Learning compact geometric features [C]//Proceedings of 2017 IEEE international conference on computer vision. Venice, Italy: IEEE, 2017: 153-161. DOI:10.1109/ICCV.2017.26. [58] LI Nan, PFEIFER N, LIU Chun. Tensor-based sparse representation classification for urban airborne LiDAR points[J]. Remote Sensing, 2017, 9(12):1216. DOI: 10.3390/rs9121216. [59] 陈龙,刘坤华,周宝定,等.多智能体协同高精地图构建关键技术研究[J].测绘学报,2021,50(11):1447-1456. DOI:10.11947/j.AGCS.2021.20210259. CHEN Long, LIU Kunhua, ZHOU Baoding, et al. Key technologies of multi-agent collaborative high definition map construction[J]. Acta Geodaetica et Cartographica Sinica, 2021,50(11): 1447-1456. DOI: 10.11947/j.AGCS.2021.20210259. [60] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]: IEEE, 2017: 2881-2890. DOI:10.1109/CVPR.2017.660. [61] FENG Mingtao, ZHANG Liang, LIN Xuefei, et al. Point attention network for semantic segmentation of 3D point clouds[J]. Pattern Recognition, 2020,107: 107446. DOI: 10.1016/j.patcog.2020.107446. [62] WWAB C, LDAB C, QEAB C, et al. Context-sensitive zero-shot semantic segmentation model based on meta-learning[J]. Neurocomputing, 2021, 465(20): 465-475. DOI: 10.1016/j.neucom.2021.08.120. [63] WEINMANN M, SCHMIDT A, MALLET C, et al. Contextual classification of point cloud data by exploiting individual 3D neigbourhoods [J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, 2(W4): 271-278. DOI: 10.1016/j.neucom.2021.08.120. [64] FANG H, LAFARGE F. Pyramid scene parsing network in 3D: improving semantic segmentation of point clouds with multi-scale contextual information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 246-258. DOI:10.1016/j.isprsjprs.2019.06.010. [65] LUO Haifeng, CHEN Chongcheng, FANG Lina, et al. MS-RRFSegNet: multiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8301-8315. DOI:10.1109/TGRS.2020.2985695. [66] 张继贤,林祥国,梁欣廉.点云信息提取研究进展和展望[J].测绘学报, 2017,46 (10): 1460-1469. DOI: 10.11947/j. AGCS.2017.20170345. ZHANG Jixian, LIN Xiangguo, LIANG Xinlian. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10): 1460-1469. DOI:10.11947/j.AGCS.2017.20170345. [67] ZHANG Liqiang, ZHANG Liang. Deep learning-based classification and reconstruction of residential scenes from large-scale point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1887-1897. DOI:10.1109/TGRS.2017.2769120. [68] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 945-953. DOI:10.1109/ICCV.2015.114. [69] BOULCH A, GUERRY Y, SAUX B L, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2017, 71(APR.):189-198. DOI:10.1016/j.cag.2017.11.010. [70] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [S.l.]: IEEE, 2015: 922-928. DOI:10.1109/IROS.2015.7353481. [71] TCHAPMI L P, CHOY C B, ARMENI I, et al. SEGCloud: semantic segmentation of 3D point clouds[C]//Proceedings of 2017 International Conference on 3D Vision (3DV). Qingdao, China: IEEE, 2017: 537-547. DOI:10.1109/3DV.2017.00067. [72] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 77-85. DOI:10.1109/CVPR.2017.16. [73] QI C R, LI Y, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS). [S.l.]: Advances in Neural Information Processing Systems, 2017, 30: 5100-5109. [74] 王聪. 基于时空信息模型的智慧城市数字底座设计初探[J].测绘地理信息,2021,46(S1):162-164. DOI:10. 14188/j. 2095-6045. 2020088. WANG Cong. Preliminary study on design of digital base for smart city based on spatio-temporal information model[J]. Journal of Geomatics, 2021,46(S1):162-164. DOI:10. 14188/j. 2095-6045. 2020088. [75] YU Bailang, LIU H, WU Jianping, et al. Automated derivation of urban building density information using airborne LiDAR data and object-based method[J]. Landscape & Urban Planning, 2010, 98(3-4):210-219. DOI:10.1016/j.landurbplan.2010.08.004. [76] 顾建祥,杨必胜,董震,等.面向数字孪生城市的智能化全息测绘[J].测绘通报,2020(6):134-140. DOI: 10.13474/j.cnki.11-2246.2020.0196. GU Jianxiang, YANG Bisheng, DONG Zhen, et al. Intelligent perfect-information surveying and mapping for digital twin cities[J]. Bulletin of Surveying and Mapping, 2020(6):134-140. DOI:10.13474/j.cnki.11-2246.2020.0196. [77] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]: IEEE, 2019:770-779. DOI: 10.1109/CVPR.2019.00086. [78] WU Hangbin, YAO Lianbi, XV Zeran, et al. Road pothole extraction and safety evaluation by integration of point cloud and images derived from mobile mapping sensors[J]. Advanced Engineering Informatics, 2019(42):100936.1-100936.11. DOI:10.1016/j.aei.2019.100936. [79] ZHANG Shanxin, WANG Cheng, LIN Lili, et al. Automated visual recognizability evaluation of traffic sign based on 3D LiDAR point clouds[J]. Remote Sensing, 2019, 11(12)1453. DOI:10.3390/rs11121453. [80] CHEN Zhuo, LIU Chun, WU Hangbin. A higher-order tensor voting-based approach for road junction detection and delineation from airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(4): 91-114. DOI:10.1016/j.isprsjprs.2019.02.003. [81] LIU Jingbin, XU Dong, JUHA H, et al. A survey of applications with combined BIM and 3D laser scanning in the life cycle of buildings[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021(14): 5627-5637. DOI:10.1109/JSTARS.2021.3068796. [82] TM A, TY A, TK A, et al. Quantitative evaluation of peeling and delamination on infrastructure surfaces by laser signal and image processing of 3D point cloud data[J]. Automation in Construction, 2022(133)104023. DOI:10.1016/j.autcon.2021.104023. [83] JIA Shoujun, LIU Chun, GUAN Xianjun, et al. Bidirectional interaction between BIM and construction processes using a multisource geospatial data enabled point cloud model[J]. Automation in Construction, 2022(134)104096. DOI:10.1016/j.autcon.2021.104096. [84] 朱合华,李晓军,林晓东.基础设施智慧服务系统(iS3)及其应用[J].土木工程学报,2018,51(1):1-12. DOI: 10.15951/j.tmgcxb.2018.01.001. ZHU Hehua, LI Xiaojun, LIN Xiaodong. Infrastructure smart service system (iS3) and its application[J]. China Civil Eegineering Journal, 2018,51(1):1-12. DOI: 10.15951/j.tmgcxb.2018.01.001. [85] LIU Chun, SHAO Xiaohang, LI Weiyue. Multi-sensor observation fusion scheme based on 3D variational assimilation for landslide monitoring[J]. Geomatics Natural Hazards & Risk, 2019, 10(1):151-167. DOI: 10.1080/19475705.2018.1513871. [86] JI Shunping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020(17): 1337-1352. DOI:10.1007/s10346-020-01353-2. [87] GHORBANZADEH O, BLASCHKE T, GHOLAMNIA K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2)196. DOI:10.3390/rs11020196. [88] 李玉美,郭庆华,万波,等.基于激光雷达的自然资源三维动态监测现状与展望[J].遥感学报,2021,25(1):381-402. DOI:10.11834/jrs.20210351. LI Yumei, GUO Qinghua, WAN Bo, et al. Current status and prospect of three-dimensional dynamic monitoring of natural resources based on LiDAR[J]. National Remote Sensing Bulletin, 2021,25(1):381-402. DOI:10.11834/jrs.20210351. [89] LIU Chun, AI Mengchi, CHEN Zhuo, et al. Detection of firmiana danxiaensis canopies by a customized imaging system mounted on an UAV platform[J]. Journal of Sensors, 2018, 2018(9):1-12. DOI:10.1155/2018/6869807. [90] HU Tianyu, MA Q, SU Yanjun, et al. A simple and integrated approach for fire severity assessment using bi-temporal airborne LiDAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78: 25-38. DOI:10.1016/j.jag.2019.01.007. [91] MA Q, SU Y, TAO Shengli, et al. Quantifying individual tree growth and tree competition using bi-temporal airborne laser scanning data: a case study in the Sierra Nevada Mountains, California[J]. International Journal of Digital Earth, 2018, 11(5):485-503. DOI10.1080/17538947.2017.1336578. [92] 霍芃芃,侯庆明,周庆,等.基于多种数据源的三维重建方法研究——以北京明长城为例[J].测绘通报,2020(S1):262-267.DOI:10.13474/j.cnki.11-2246.2020.0562. HUO Pengpeng, HOU Qingming, ZHOU Qing, et al. Research on 3D reconstruction based on multiple data sources: a case study of Ming Dynasty Great Wall in Beijing[J]. Bulletin of Surveying and Mapping, 2020(S1):262-267. DOI: 10.13474/j.cnki.11-2246.2020.0562. [93] ALLEN P K, TROCCOLI A, SMITH B, et al. New methods for digital modeling of historic sites[J]. IEEE Computer Graphics and Applications, 2003, 23(6): 32-41. DOI: 10.1109/MCG.2003.1242380. [94] SAMPATH A, JIE S. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(3):1554 1567. DOI:10.1109/TGRS.2009.2030180. [95] 田继成,罗宏,吴邵明.三维激光扫描技术在云冈石窟13窟数字化中的应用[J].城市勘测,2014(4):23-26. TIAN Jicheng, LUO Hong, WU Shaoming. Application of 3D laser scanning technology in digital in Yungang grottoes cave 13[J]. Urban Geotechnical Investigation & Surveying, 2014(4):23-26. |
[1] | 张永军, 万一, 史文中, 张祖勋, 李彦胜, 季顺平, 郭浩宇, 李礼. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8): 1068-1083. |
[2] | 麻卫峰, 王成, 王金亮, 周京春, 麻源源. 激光点云输电线精细提取的残差聚类法[J]. 测绘学报, 2020, 49(7): 883-892. |
[3] | 朱笑笑, 王成, 习晓环, 王濮, 田新光, 杨学博. 多级移动曲面拟合的自适应阈值点云滤波方法[J]. 测绘学报, 2018, 47(2): 153-160. |
[4] | 朱俊锋, 胡翔云, 张祖勋, 熊小东. 多尺度点云噪声检测的密度分析法[J]. 测绘学报, 2015, 44(3): 282-291. |
[5] | 亢晓琛 刘纪平 林祥国. 基于多核CPU的机载LiDAR点云并行三角网渐进加密滤波方法[J]. , 2013, 42(3): 0-0. |
[6] | 王晏民,郭明. 大规模点云数据的二三维混合索引方法[J]. 测绘学报, 2012, 41(4): 0-590. |
[7] | 隋立春,杨耘. 基于Car(p,q)模型和数学形态学理论的LiDAR点云数据滤波[J]. 测绘学报, 2012, 41(2): 219-224. |
[8] | 吴杭彬. 融合航空影像的机载激光扫描数据分类与特征提取[J]. 测绘学报, 2011, 40(1): 134-134. |
[9] | 隋立春. 基于改进的数学形态学算法的LiDAR点云数据滤波[J]. 测绘学报, 2010, 39(4): 0-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||