[1] 周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015, 34(2): 129-131. ZHOU Chenghu. Prospects on pan-spatial information system[J]. Progress in Geography, 2015, 34(2): 129-131. [2] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1788-1796. GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796. [3] IM J. Earth observations and geographic information science for sustainable development goals[J]. GIScience & Remote Sensing, 2020, 57(5): 591-592. [4] 龚健雅, 张翔, 向隆刚, 等. 智慧城市综合感知与智能决策的进展及应用applications for integrated sensing and intelligent decision in smart city[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1482-1497.DOI: 10.11947/j.AGCS.2019.20190464. [5] 周成虎. 地理元胞自动机研究[M]. 北京: 科学出版社, 1999. ZHOU Chenghu. Research on geographical cellular automata[M]. Beijing: Science Press, 1999. [6] 黎夏. 协同空间模拟与优化及其在快速城市化地区的应用[J]. 地球信息科学学报, 2013, 15(3): 321-327. LI Xia. Collaborative spatio- simulation and optimization and its application in fast growing regions[J]. Journal of Geo-Information Science, 2013, 15(3): 321-327. [7] LIU Yan, CORCORAN J, FENG Yongjiu. Cellular automata[M]. Amsterdam: Elsevier, 2020: 101-104. [8] LIU Xiaoping, LIANG Xun, LI Xia, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168: 94-116. [9] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(s1): 234-240. [10] COUCLELIS H. Cellular worlds: a framework for modeling micro—macro dynamics[J]. Environment and Planning A: Economy and Space, 1985, 17(5): 585-596. [11] WHITE R, ENGELEN G. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns[J]. Environment and Planning A: Economy and Space, 1993, 25(8): 1175-1199. [12] CLARKE K C, HOPPEN S, GAYDOS L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area[J]. Environment and Planning B: Planning and Design, 1997, 24(2): 247-261. [13] 刘耀林, 何建华. 科技创新推动下“智慧土地”发展的机遇与挑战[J]. 中国科学院院刊, 2020, 35(5): 645-652. LIU Yaolin, HE Jianhua. Opportunities and challenges for sci-tech innovation promoted development of smart land[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(5): 645-652. [14] LI Xia, YEH A G. Cellular automata modelling for urban planning in fast-growth regions, Handbook of planning support science[M]. London,UK:Edward Elgar Publishing, 2020. [15] CAMPBELL J B, WYNNE R H. Introduction to remote sensing[M]. Guilford:Guilford Press, 2011. [16] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. [17] FENG Yongjiu, LIU Yang, TONG Xiaohua. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China[J]. Ecological Indicators, 2018, 87: 22-32. [18] CHEN Jun, CHEN Jin, LIAO Anping, et al. Global land cover mapping at 30 m resolution: a POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27. [19] GONG Peng, CHEN Bin, LI Xuecao, et al. Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018[J]. Science Bulletin, 2020, 65(3): 182-187. [20] 陈军, 陈晋, 廖安平, 等. 全球30 m地表覆盖遥感制图的总体技术[J]. 测绘学报, 2014, 43(6): 551-557. CHEN Jun, CHEN Jin, LIAO Anping, et al. Concepts and key techniques for 30 m global land cover mapping[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 551-557. [21] 刘良云. 叶面积指数遥感尺度效应与尺度纠正[J]. 遥感学报, 2014, 18(6): 1158-1168. LIU Liangyun. Simulation and correction of spatialscaling effects for leaf area index[J]. Journal of Remote Sensing, 2014, 18(6): 1158-1168. [22] FENG Yongjiu, LI Heping, TONG Xiaohua, et al. Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China[J]. Global and Planetary Change, 2018, 167: 24-34. [23] FENG Yongjiu, TONG Xiaohua. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change[J]. Environmental Monitoring and Assessment, 2017, 189(10): 1-17. [24] FENG Yongjiu, WANG Rong, TONG Xiaohua, et al. How much can temporally stationary factors explain cellular automata-based simulations of past and future urban growth? [J]. Computers, Environment and Urban Systems, 2019, 76: 150-162. [25] YAN Xinlei, FENG Yongjiu, TONG Xiaohua, et al. Reducing spatial autocorrelation in the dynamic simulation of urban growth using eigenvector spatial filtering[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102434. [26] 邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56. DENG Min, CAI Jiannan, YANG Wentao, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-Information Science, 2020, 22(1): 41-56. [27] 郭仁忠. 空间分析[M]. 2版. 北京: 高等教育出版社, 2001. GUO Renzhong. Spacial analysis[M]. Beijing: Higher Education Press, 2001. [28] CHEN Shurui, FENG Yongjiu, TONG Xiaohua, et al. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression[J]. Science of the Total Environment, 2020, 712: 136509. [29] FENG Yongjiu, TONG Xiaohua. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules[J]. GIScience & Remote Sensing, 2018, 55(5): 678-698. [30] FENG Yongjiu, TONG Xiaohua. A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods[J]. International Journal of Geographical Information Science, 2020, 34(1): 74-97. [31] FENG Yongjiu, YANG Qianqian, HONG Zhonghua, et al. Modelling coastal land use change by incorporating spatial autocorrelation into cellular automata models[J]. Geocarto International, 2018, 33(5): 470-488. [32] FENG Yongjiu, TONG Xiaohua. Incorporation of spatial heterogeneity-weighted neighborhood into cellular automata for dynamic urban growth simulation[J]. GIScience & Remote Sensing, 2019, 56(7): 1024-1045. [33] 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8): 995-1005.DOI: 10.11947/j.AGCS.2021.20210235. CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 995-1005.DOI: 10.11947/j.AGCS.2021.20210235. [34] FENG Yongjiu, LIU Yan, TONG Xiaohua. Comparison of metaheuristic cellular automata models: a case study of dynamic land use simulation in the Yangtze River Delta[J]. Computers, Environment and Urban Systems, 2018, 70: 138-150. [35] VARGA O G, PONTIUS R G Jr, SINGH S K, et al. Intensity analysis and the figure of Merit's components for assessment of a Cellular Automata-Markov simulation model[J]. Ecological Indicators, 2019, 101: 933-942. [36] WOLF L J, ANSELIN L, ARRIBAS-BEL D, et al. On spatial and platial dependence: examining shrinkage in spatially dependent multilevel models[J]. Annals of the American Association of Geographers, 2021,111(6): 1679-1691. [37] PONTIUS R G, CASTELLA J C, NIJS T, et al. Lessons and challenges in land change modeling derived from synthesis of cross-case comparisons[J]. Trends In Spatial Analysis And Modelling, 2018(1): 143-164. [38] TONG Xiaohua, FENG Yongjiu. A review of assessment methods for cellular automata models of land-use change and urban growth[J]. International Journal of Geographical Information Science, 2020, 34(5): 866-898. [39] WANG Siqin, LIU Yan, FENG Yongjiu, et al. To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels[J]. International Journal of Digital Earth, 2021, 14(9): 1213-1235. [40] FENG Yongjiu, TONG Xiaohua. Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth[J]. Environmental Earth Sciences, 2017, 76(14): 1-15. [41] 岳文泽, 王田雨, 甄延临. “三区三线”为核心的统一国土空间用途管制分区[J]. 中国土地科学, 2020, 34(5): 52-59, 68. YUE Wenze, WANG Tianyu, ZHEN Yanlin. Unified zoning of territorial space use control derived from the core concept of “three types of spatial zones and alert-lines”[J]. China Land Science, 2020, 34(5): 52-59, 68. [42] FENG Yongjiu, LEI Zhenkun, TONG Xiaohua, et al. Spatially-explicit modeling and intensity analysis of China's land use change 2000—2050[J]. Journal of Environmental Management, 2020, 263: 110407. [43] TONG Xiaohua, FENG Yongjiu. How current and future urban patterns respond to urban planning? An integrated cellular automata modeling approach[J]. Cities, 2019, 92: 247-260. [44] AZARI M, TAYYEBI A, HELBICH M, et al. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran[J]. GIScience & Remote Sensing, 2016, 53(2): 183-205. [45] FENG Yongjiu, WANG Jiafeng, TONG Xiaohua, et al. The effect of observation scale on urban growth simulation using particle swarm optimization-based CA models[J]. Sustainability, 2018, 10(11): 4002. [46] SHIFERAW H, BEWKET W, ALAMIREW T, et al. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia[J]. Science of the Total Environment, 2019, 675: 354-366. [47] GONG Jianzhou, HU Zhiren, CHEN Wenli, et al. Urban expansion dynamics and modes in metropolitan Guangzhou, China[J]. Land Use Policy, 2018, 72: 100-109. [48] FENG Yongjiu, CHEN Shurui, TONG Xiaohua, et al. Modeling changes in China's 2000—2030 carbon stock caused by land use change[J]. Journal of Cleaner Production, 2020, 252: 119659. [49] LIU Xiaoping, WANG Shaojian, WU Peijun, et al. Impacts of urban expansion on terrestrial carbon storage in China[J]. Environmental Science & Technology, 2019, 53(12): 6834-6844. [50] WADDELL P. UrbanSim: modeling urban development for land use, transportation, and environmental planning[J]. Journal of the American Planning Association, 2002, 68(3): 297-314. [51] DIETZEL C, CLARKE K C. Toward optimal calibration of the SLEUTH land use change model[J]. Transactions in GIS, 2007, 11(1): 29-45. [52] VERBURG P H, SOEPBOER W, VELDKAMP A, et al. Modeling the spatial dynamics of regional land use: the CLUE-S model[J]. Environmental Management, 2002, 30(3): 391-405. [53] FENG Yongjiu. Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules[J]. International Journal of Geographical Information Science, 2017, 31(6): 1198-1219. [54] CLARKE K C. Land use change modeling with SLEUTH: improving calibration with a genetic algorithm[M]//Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer International Publishing, 2017: 139-161. [55] KUCSICSA G, POPOVICI E A, BĂLTEANU D, et al. Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database[J]. Landscape and Ecological Engineering, 2019, 15(1): 75-90. [56] FENG Yongjiu, LIU Yan. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing[J]. International Journal of Geographical Information Science, 2013, 27(3): 449-466. |