[1] |
李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12):1475-1481.DOI:10.11947/j.AGCS.2019.20190437. LI Deren. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1475-1481 DOI:10.11947/j.AGCS.2019.20190437.
|
[2] |
叶利华,王磊,张文文,等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6):698-707.DOI:10.11947/j.AGCS.2019.20180434. YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6):698-707. DOI:10.11947/j.AGCS.2019.20180434.
|
[3] |
郑卓,方芳,刘袁缘,等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191.
|
[4] |
ZEILER Matthew D,FERGUS Rob. Visualizing and understanding convolutional networks[C]//Proceedings of 2014 European Conference on Computer Vision.[S.l.]:Springer, 2014:818-833.
|
[5] |
ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]//Proceedings of 2016 European Conference on Computer Vision.[S.l.]:Springer, 2016:649-666.
|
[6] |
LARSSON G, MAIRE M, SHAKHNAROVICH G. Colorization as a proxy task for visual understanding[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA:IEEE, 2017:6874-6883.
|
[7] |
KOMODAKIS N,GIDARIS S. Unsupervised representation learning by predicting image rotations[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver, Canada:ICLR, 2018.
|
[8] |
CHEN Ting,ZHAI Xiaohua,RITTER Marvin, et al. Self-supervised GANs via auxiliary rotation loss[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Ca, USA:IEEE, 2019:12146-12155.
|
[9] |
KIM D, CHO D, YOO D, et al. Learning image representations by completing damaged jigsaw puzzles[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA:IEEE, 2018:793-802.
|
[10] |
NOROOZI M, FAVARO P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]//Proceedings of 2016 European Conference on Computer Vision.[S.l.]:Springer, 2016:69-84.
|
[11] |
WEI Chen,XIE Lingxi,REN Xutong, et al. Iterative reorganization with weak spatial constraints:solving arbitrary jigsaw puzzles for unsupervised representation learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA:IEEE, 2019:1910-1919.
|
[12] |
CHEN Ting,KORNBLITH Simon,NOROUZI Mohammad, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of 2020 International Conference on Machine Learning. Addis Ababa, Ethiopia:PMLR, 2020:1597-1607.
|
[13] |
HE Kaiming,FAN Haoqi,WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA:IEEE, 2020:9729-9738.
|
[14] |
TAO Chao, QI Ji, LU Weipeng, et al. Remote sensing image scene classification with self-supervised paradigm under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[15] |
CARON M,MISRA I,MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]//Proceedings of the 34th Conference on Neural Information Processing Systems.[S.l.]:NeurIPS, 2020.
|
[16] |
GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent:a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33:21271-21284.
|
[17] |
CHEN Xinlei, HE Kaiming. Exploring simple Siamese representation learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA:IEEE, 2021:15745-15753.
|
[18] |
ZHAO Zhicheng,LUO Ze,LI Jian, et al. When self-supervised learning meets scene classification:remote sensing scene classification based on a multitask learning framework[J]. Remote Sensing, 2020, 12(20):3276.
|
[19] |
VINCENZI S, PORRELLO A, BUZZEGA P, et al. The color out of space:learning self-supervised representations for Earth Observation imagery[C]//Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy:IEEE, 2021:3034-3041.
|
[20] |
REN Bo, ZHAO Yangyang, HOU Biao, et al. A mutual information-based self-supervised learning model for PolSAR land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11):9224-9237.
|
[21] |
JUNG H, OH Y, JEONG S, et al. Contrastive self-supervised learning with smoothed representation for remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[22] |
CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]//Proceedings of 2018 European Conference on Computer Vision.[S.l.]:ECCV,2018.
|
[23] |
VAN GANSBEKE W, VANDENHENDE S, GEORGOULIS S, et al. SCAN:learning to classify images without labels[C]//Proceedings of 2020 Computer Vision.[S.l.]:ECCV,2020.
|
[24] |
MANDAL D, BHARADWAJ S, BISWAS S. A novel self-supervised re-labeling approach for training with noisy labels[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass, CO, USA:IEEE, 2020:1370-1379.
|
[25] |
PARK S, HAN S, KIM S, et al. Improving unsupervised image clustering with robust learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021:12273-12282.
|
[26] |
LI Yunfan, HU Peng, LIU Zitao, et al. Contrastive clustering[C]//Proceedings of 2021 AAAI Conference on Artificial Intelligence. Vancouver, Canada:AAAI, 2021.
|
[27] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:770-778.
|
[28] |
BERTHELOT D, CARLINI N, GOODFELLOW I J, et al. MixMatch:a holistic approach to semi-supervised learning[J]. Advances in Neural Information Processing Systems, 2019, 32:1905.
|
[29] |
LU Xiaoqiang,GONG Tengfei,ZHENG Xiangtao. Multisource compensation network for remote sensing cross-domain scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2504-2515.
|
[30] |
WEI Yufan,LUO Xiaobo,HU Lixin, et al. An improved unsupervised representation learning generative adversarial network for remote sensing image scene classification[J]. Remote Sensing Letters, 2020, 11(6):598-607.
|