测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1356-1371.doi: 10.11947/j.AGCS.2022.20220131
吴立新1,2, 齐源1,2, 毛文飞1,2, 刘善军3, 丁逸凡1,2, 荆凤4, 申旭辉5
收稿日期:
2022-02-25
修回日期:
2022-05-25
发布日期:
2022-08-13
通讯作者:
齐源
E-mail:weloveqy@163.com
作者简介:
吴立新(1966-),男,博士,教授,研究方向为地灾感知认知、遥感-岩石力学、数字矿山与智能矿山、三维地学建模与应用。E-mail:wulx66@csu.edu.cn
基金资助:
WU Lixin1,2, QI Yuan1,2, MAO Wenfei1,2, LIU Shanjun3, DING Yifan1,2, JING Feng4, SHEN Xuhui5
Received:
2022-02-25
Revised:
2022-05-25
Published:
2022-08-13
Supported by:
摘要: 被动微波遥感卫星具有多波段多极化观测能力,其全天候、高灵敏度特性契合了地壳活动及地震的监测分析需求。近年来,地震孕育和发生过程中的热异常遥感监测与分析得到了广泛关注。本文从星载被动微波传感器发展和地震被动微波遥感应用两方面,梳理了多波段多极化被动微波卫星遥感用于地震监测与异常识别的研究现状,剖析了微波数据选择、异常分析方法、观测粗差剔除和信息机理认知等方面的进展与不足。总结了近年微波遥感地震应用的研究进展,阐明了多波段多极化被动微波卫星遥感用于地震异常识别的科学逻辑与复合链条。提出了地震遥感的两个前沿探索方向,即地震微波异常的可靠识别、地应力场变化微波遥感的信息物理。指出了遥感-岩石力学基础试验研究和地震遥感综合分析层面亟待解决的关键问题。进而呼吁,多学科联合、交叉乃至融合是地震遥感科学与技术向纵深发展的必由之路。
中图分类号:
吴立新, 齐源, 毛文飞, 刘善军, 丁逸凡, 荆凤, 申旭辉. 多波段多极化被动微波遥感地震应用研究进展与前沿方向探索[J]. 测绘学报, 2022, 51(7): 1356-1371.
WU Lixin, QI Yuan, MAO Wenfei, LIU Shanjun, DING Yifan, JING Feng, SHEN Xuhui. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1356-1371.
[1] ULABY F T, LONG D G. Microwave radar and radiometric remote sensing[M]. Ann Arbor:The University of Michigan Press, 2014. [2] HASTED J B. Aqueous dielectrics[M]. London:Chapman and Hall, 1973. [3] WANG J R, SCHMUGGE T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4):288-295. DOI:10.1109/TGRS.1980.350304. [4] JACKSON T J. Ⅲ. Measuring surface soil moisture using passive microwave remote sensing[J]. Hydrological Processes, 1993, 7(2):139-152. DOI:10.1002/hyp.3360070205. [5] MLADENOVA I E, JACKSON T J, NJOKU E, et al. Remote monitoring of soil moisture using passive microwave-based techniques-theoretical basis and overview of selected algorithms for AMSR-E[J]. Remote Sensing of Environment, 2014, 144:197-213. DOI:10.1016/j.rse.2014.01.013. [6] NJOKU E G, JACKSON T J, LAKSHMI V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):215-229. DOI:10.1109/TGRS.2002.808243. [7] NJOKU E G, ENTEKHABI D. Passive microwave remote sensing of soil moisture[J]. Journal of Hydrology, 1996, 184(1-2):101-129. DOI:10.1016/0022-1694(95)02970-2. [8] 金亚秋.星载微波SSM/I遥感在中国东北华北农田的辐射特征分析[J].遥感学报, 1998, 2(1):19-25. JIN Yaqiu. Data analysis of the spaceborne SSM/I over crop areas of the Northern China[J]. Journal of Remote Sensing, 1998, 2(1):19-25. [9] 谷松岩,张文建,邱红. SSM/I资料反演大范围地表湿度试验[J].应用气象学报, 2004, 15(4):407-416. GU Songyan, ZHANG Wenjian, QIU Hong. Retrieving regional soil moisture over China from SSM/I microwave data[J]. Journal of Applied Meteorological Science, 2004, 15(4):407-416. [10] 乔平林,张继贤,王翠华.应用AMSR-E微波遥感数据进行土壤湿度反演[J].中国矿业大学学报, 2007, 36(2):262-265. QIAO Pinglin, ZHANG Jixian, WANG Cuihua. Soil moisture retrieving by AMSR-E microwave remote sensing data[J]. Journal of China University of Mining&Technology, 2007, 36(2):262-265. [11] 杨涛,宫辉力,李小娟,等.土壤水分遥感监测研究进展[J].生态学报, 2010, 30(22):6264-6277. YANG Tao, GONG Huili, LI Xiaojuan, et al. Progress of soil moisture monitoring by remote sensing[J]. Acta Ecologica Sinica, 2010, 30(22):6264-6277. [12] PRIGENT C, ROSSOW W B, MATTHEWS E. Microwave land surface emissivities estimated from SSM/I observations[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D18):21867-21890. DOI:10.1029/97JD01360. [13] PRIGENT C, ROSSOW W B, MATTHEWS E. Global maps of microwave land surface emissivities:potential for land surface characterization[J]. Radio Science, 1998, 33(3):745-751. DOI:10.1029/97RS02460. [14] LI Zhaoliang, TANG Bohui, WU Hua, et al. Satellite-derived land surface temperature:current status and perspectives[J]. Remote Sensing of Environment, 2013, 131:14-37. DOI:10.1016/j.rse.2012.12.008. [15] 毛克彪,施建成,李召良,等.一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J].中国科学D辑:地球科学, 2006, 36(12):1170-1176. MAO Kebiao, SHI Jiancheng, LI Zhaoliang, et al. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data[J]. Science in China Series D:Earth Sciences, 2006, 36(12):1170-1176. [16] 毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感, 2005(3):14-17. MAO Kebiao, SHI Jiancheng, LI Zhaoliang, et al. The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J]. Remote Sensing for Land&Resources, 2005(3):14-17. [17] KARBOU F, GÉRARD É, RABIER F. Microwave land emissivity and skin temperature for AMSU-A and-B assimilation over land[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(620):2333-2355. DOI:10.1256/qj.05.216. [18] SCHROEDER R, MCDONALD K C, CHAPMAN B D, et al. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data[J]. Remote Sensing, 2015, 7(12):16688-16732. DOI:10.3390/rs71215843. [19] TAIT A B. Estimation of snow water equivalent using passive microwave radiation data[J]. Remote Sensing of Environment, 1998, 64(3):286-291. DOI:10.1016/S0034-4257(98)00005-4. [20] 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土, 2004, 26(3):363-368. CHE Tao, LI Xin, GAO Feng. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368. [21] CHE Tao, LI Xin, JIN Rui, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49:145-154. DOI:10.3189/172756408787814690. [22] ROTT H, PAUL F. Satellite remote sensing of glaciers and ice sheets[M]//FOWLER A, NG F. Glaciers and Ice Sheets in the Climate System. Cham:Springer, 2021:327-348. DOI:10.1007/978-3-030-42584-5_13. [23] 殷晓斌.海面风矢量、温度和盐度的被动微波遥感及风对温盐遥感的影响研究[D].青岛:中国海洋大学, 2007. YIN Xiaobin. A study on the passive microwave remote sensing of sea surface wind vector, temperature and salinity and the effect of wind on remote sensing of temperature and salinity[D]. Qingdao:Ocean University of China, 2007. [24] BLUME H J C, KENDALL B M. Passive microwave measurements of temperature and salinity in coastal zones[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(3):394-404. DOI:10.1109/TGRS.1982.350461. [25] KLEMAS V. Remote sensing of sea surface salinity:an overview with case studies[J]. Journal of Coastal Research, 2011, 27(5):830-838. DOI:10.2112/JCOASTRES-D-11-00060.1. [26] PRABHAKARA C, WANG I, CHANG A T C, et al. A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed[J]. Journal of Applied Meteorology and Climatology, 1983, 22(12):2023-2037. DOI:10.1175/1520-0450(1983)022<2023:ASEONS>2.0.CO;2. [27] BENTAMY A, QUEFFEULOU P, QUILFEN Y, et al. Ocean surface wind fields estimated from satellite active and passive microwave instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2469-2486. DOI:10.1109/36.789643. [28] CHANG A T C, WILHEIT T T. Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite[J]. Radio Science, 1979, 14(5):793-802. DOI:10.1029/RS014i005p00793. [29] 王振占,姜景山,刘璟怡,等.全极化微波辐射计遥感海面风场的关键技术和科学问题[J].中国工程科学, 2008, 10(6):76-86. WANG Zhenzhan, JIANG Jingshan, LIU Jingyi, et al. Critical technique and scientific topic on fully polarized microwave radiometer remote sensing sea surface wind vector[J]. Engineering Science, 2008, 10(6):76-86. [30] TROY B E, HOLLINGER, J P, LERNER, R M, et al. Measurement of the microwave properties of sea ice at 90GHz and lower frequencies[J]. Journal of Geophysical Research:Oceans, 1981, 86(C5):4283-4289. DOI:10.1029/JC086iC05p04283. [31] 季青,庞小平,许苏清,等.极地海冰厚度探测方法及其应用研究综述[J].极地研究, 2016, 28(4):431-441. DOI:10.13679/j.jdyj.2016.4.431. JI Qing, PANG Xiaoping, XU Suqing, et al. Review of technology and application research on polar sea ice thickness detection[J]. Chinese Journal of Polar Research, 2016, 28(4):431-441. DOI:10.13679/j.jdyj.2016.4.431. [32] SCHLUESSEL P, EMERY W J. Atmospheric water vapour over oceans from SSM/I measurements[J]. International Journal of Remote Sensing, 1990, 11(5):753-766. DOI:10.1080/01431169008955055. [33] 李芸,王振占."神舟4号"飞船微波辐射计亮温反演海面温度、风速和大气水汽含量[J].遥感技术与应用, 2005, 20(1):133-136. LI Yun, WANG Zhenzhan. Retrievals of sea surface temperatures, wind speeds, volume water vapor contents from SZ-4 RAD brightness temperatures[J]. Remote Sensing Technology and Application, 2005, 20(1):133-136. [34] WATERS J W, KUNZI K F, PETTYJOHN R L, et al. Remote sensing of atmospheric temperature profiles with the Nimbus 5 microwave spectrometer[J]. Journal of the Atmospheric Sciences, 1975, 32(10):1953-1969. DOI:10.1175/1520-0469(1975)032<1953:RSOATP>2.0.CO;2. [35] DI PAOLA F, RICCIARDELLI E, CIMINI D, et al. MiRTaW:an algorithm for atmospheric temperature and water vapor profile estimation from ATMS measurements using a random forests technique[J]. Remote Sensing, 2018, 10(9):1398. DOI:10.3390/rs10091398. [36] 谷松岩,高慧琳,朱元竞,等. TMI被动微波遥感资料用于地表洪涝特征分析试验[J].遥感学报, 2004, 8(3):261-268. GU Songyan, GAO Huilin, ZHU Yuanjing, et al. The application of TMI polarization ratio PR in flooded area detecting and classification[J]. Journal of Remote Sensing, 2004, 8(3):261-268. [37] TUCKER C J, CHOUDHURY B J. Satellite remote sensing of drought conditions[J]. Remote Sensing of Environment, 1987, 23(2):243-251. DOI:10.1016/0034-4257(87)90040-X. [38] 陈修治,苏泳娴,李勇,等.基于被动微波遥感的中国干旱动态监测[J].农业工程学报, 2013, 29(16):151-158. CHEN Xiuzhi, SU Yongxian, LI Yong, et al. Monitoring drought dynamics of China using passive microwave remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(16):151-158. [39] VAROTSOS C A, KRAPIVIN V F, MKRTCHYAN F A. A new passive microwave tool for operational forest fires detection:a case study of Siberia in 2019[J]. Remote Sensing, 2020, 12(5):835. DOI:10.3390/rs12050835. [40] MAEDA T, TAKANO T. Discrimination of local and faint changes from satellite-borne microwave-radiometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9):2684-2691. DOI:10.1109/TGRS.2008.919144. [41] TAKANO T, MAEDA T. Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1):107-111. DOI:10.1109/LGRS.2008.2005735. [42] 吴立新,秦凯,刘善军.断裂活动及孕震过程遥感热异常分析的研究进展[J].测绘学报, 2017, 46(10):1470-1481. DOI:10.11947/j.AGCS.2017.20170347. WU Lixin, QIN Kai, LIU Shanjun. Progress in analysis to remote sensed thermal abnormity with fault activity and seismogenic process[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1470-1481. DOI:10.11947/j.AGCS.2017.20170347. [43] STRAITON A W, TOLBERT C W, BRITT C O. Apparent temperatures of some terrestrial materials and the sun at 4.3-millimeter wavelengths[J]. Journal of Applied Physics, 1958, 29(5):776-782. [44] BASHARINOV A E, GURVICH A S, YEGOROV S T, et al. The results of microwave sounding of the Earth's surface according to experimental data from the satellite Cosmos 243[G]. Space Research XI, A Kademie Verlag, Berlin, 1971. [45] GORBUNOV M E, KUTUZA B G. Cosmos-243 as the starting point for the development of microwave radiometry methods of the Earth's atmosphere and surface[J]. Izvestiya, Atmospheric and Oceanic Physics, 2018, 54(3):275-281. DOI:10.1134/S0001433818030076. [46] GRANTHAM W, BRACALENTE E, JONES W, et al. The Seasat-A satellite scatterometer[J]. IEEE Journal of Oceanic Engineering, 1977, 2(2):200-206. DOI:10.1109/JOE.1977.1145338. [47] BORN G H, DUNNE J A, LAME D B. Seasat mission overview[J]. Science, 1979, 204(4400):1405-1406. DOI:10.1126/science.204.4400.1405. [48] HALEY R, SCHARDT B. The Nimbus satellite program[C]//Proceedings of the 5th Annual Meeting and Technical Display. Philadelphia, PA:AIAA, 1968:1093. DOI:10.2514/6.1968-1093. [49] EDEN H F, OLERO B P, PERKINS J N. Nimbus satellites:setting the stage for mission to planet Earth[J]. Eos, Transactions American Geophysical Union, 1993, 74(26):281-285. DOI:10.1029/93EO00286. [50] NICHOLS D A. The defense meteorological satellite program[J]. Optical Engineering, 1975, 14(4):144273. DOI:10.1117/12.7971832. [51] KAWANISHI T, SEZAI T, ITO Y, et al. The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):184-194. DOI:10.1109/TGRS.2002.808331. [52] KACHI M, IMAOKA K, FUJII H, et al. Status of GCOM-W1/AMSR2 development and science activities[C]//Proceedings of SPIE 7106, Sensors, Systems, and Next-Generation Satellites XII. Cardiff:SPIE, 2008:71060P. DOI:10.1117/12.801228. [53] IMAOKA K, MAEDA T, KACHI M, et al. Status of AMSR2 instrument on GCOM-W1[C]//Proceedings of SPIE 8528, Earth Observing Missions and Sensors:Development, Implementation, and Characterization II. Kyoto:SPIE, 2012:852815. DOI:10.1117/12.977774. [54] GAISER P W, ST GERMAIN K M S, TWAROG E M, et al. The WindSat spaceborne polarimetric microwave radiometer:sensor description and early orbit performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2347-2361. DOI:10.1109/TGRS.2004.836867. [55] BARRE H M J P, DUESMANN B, KERR Y H. SMOS:The mission and the system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3):587-593. DOI:10.1109/TGRS.2008.916264. [56] 王蕊,史顺文,陆文.全极化微波辐射计海面风场反演实验[J].遥感信息, 2014, 29(4):85-90, 97. WANG Rui, SHI Shunwen, LU Wen. Experiment on polarimetric microwave radiometer sea surface wind vector retrieval[J]. Remote Sensing Information, 2014, 29(4):85-90, 97. [57] 杨虎,李小青,游然,等.风云三号微波成像仪定标精度评价及业务产品介绍[J].气象科技进展, 2013, 3(4):136-143. YANG Hu, LI Xiaoqing, YOU Ran, et al. Environmental data records from FengYun-3B microwave radiation imager[J]. Advances in Meteorological Science and Technology, 2013, 3(4):136-143. [58] YANG Hu, WENG Fuzhong, LV Liqing, et al. The FengYun-3 microwave radiation imager on-orbit verification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4552-4560. DOI:10.1109/TGRS.2011.2148200. [59] MENENTI M, JIA Li, MANCINI M, et al. High elevation energy and water balance:the roles of surface albedo and temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4):70-78. DOI:10.11947/j.JGGS.2020.0407. [60] ZHANG Yongfang, MIAO Jungang, ZHAO Haibo, et al. A five-frequency bands quasi-optical multiplexer for geostationary orbit microwave radiometer[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:4676-4679. DOI:10.1109/IGARSS.2012.6350422. [61] SARAF A K, CHOUDHURY S. Satellite detects pre-earthquake thermal anomalies associated with past major earthquakes[C]//Proceedings of Map Asia Conference 2004. Beijing:[s.n.], 2004:40. [62] SARAF A K, CHOUDHURY S. Thermal remote sensing technique in the study of pre-earthquake thermal anomalies[J]. Journal of Indian Geophysical Union, 2005, 9(3):197-207. [63] MAKI K I, TAKANO T, SOMA E, et al. An experimental study of microwave emissions from compression failure of rocks[J]. Zisin (Journal of the Seismological Society of Japan Ser. Ⅱ), 2006, 58(4):375-384. [64] MAEDA T, TAKANO T. Detection algorithm of earthquake-related rock failures from satellite-borne microwave radiometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):1768-1776. DOI:10.1109/TGRS.2009.2036008. [65] MAEDA T, TAKANO T. Detection of microwave signals associated with rock failures in an earthquake from satellite-borne microwave radiometer data[C]//Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town:IEEE, 2009:III-61-III-64. DOI:10.1109/IGARSS.2009.5418159. [66] 陈昊,金亚秋.星载微波辐射计对玉树地震岩石破裂辐射异常的初步检测[J].遥感技术与应用, 2010, 25(6):860-866. CHEN Hao, JIN Yaqiu. A preliminary detection of anomalous radiation of rock failures related with Yushu earthquake by using satellite-borne microwave radiometers[J]. Remote Sensing Technology and Application, 2010, 25(6):860-866. [67] SINGH R P, KUMAR J S, ZLOTNICKI J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4):580-585. DOI:10.1016/j.apgeochem.2010.01.014. [68] SINGH R P, MEHDI W, GAUTAM R, et al. Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008[J]. International Journal of Remote Sensing, 2010, 31(13):3341-3354. DOI:10.1080/01431161.2010.487503. [69] MA Yuntao, LIU Shanjun, WU Lixin, et al. Two-step method to extract seismic microwave radiation anomaly:case study of Ms 8.0 Wenchuan earthquake[J]. Earthquake Science, 2011, 24(6):577-582. DOI:10.1007/s11589-011-0819-x. [70] LIU Shanjun, LIU Xin, MA Yuntao, et al. Microwave radiation anomaly of Yushu earthquake and its mechanism[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:1192-1195. DOI:10.1109/IGARSS.2012.6351334. [71] JIE Y, GUANGMENG G. Preliminary analysis of thermal anomalies before the 2010 Baja California M 7.2 earthquake[J]. Atmósfera, 2013, 26(4):473-477. DOI:10.1016/S0187-6236(13)71089-0. [72] 钟美娇,张元生,郭晓,等.卫星热红外和微波遥感资料在地震预报中的应用研究[J].地震工程学报, 2014, 36(4):1059-1063. ZHONG Meijiao, ZHANG Yuansheng, GUO Xiao, et al. Application of satellite thermal infrared and microwave remote sensing data to earthquake prediction[J]. China Earthquake Engineering Journal, 2014, 36(4):1059-1063. [73] 黄志东,钟儒祥,朱爱军. FY-3卫星监测四川芦山地震前后热异常[J].华北地震科学, 2014, 32(3):19-23, 34. HUANG Zhidong, ZHONG Ruxiang, ZHU Aijun. FY-3 satellite monitoring of the thermal abnormality before and after 2013Ms 7.0 Lushan Earthquake[J]. North China Earthquake Sciences, 2014, 32(3):19-23, 34. [74] 张宾,秦凯,吴涛,等.地震前卫星遥感微波辐射异常统计分析:以堪察加半岛为例[J].地震学报, 2018, 40(1):98-107. DOI:10.11939/jass.20170089. ZHANG Bin, QIN Kai, WU Tao, et al. Statistical analysis of microwave radiation anomaly before earthquake:a case study of Kamchatka Peninsula[J]. Acta Seismologica Sinica, 2018, 40(1):98-107. DOI:10.11939/jass.20170089. [75] JING Feng, SINGH R P, SUN Ke, et al. Passive microwave response associated with two main earthquakes in Tibetan Plateau, China[J]. Advances in Space Research, 2018, 62(7):1675-1689. DOI:10.1016/j.asr.2018.06.030. [76] JING Feng, SINGH R P, SHEN Xuhui. Land-atmosphere-meteorological coupling associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal earthquakes[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1):1267-1284. DOI:10.1080/19475705.2019.1573629. [77] JING Feng, SINGH R P, CUI Yueju, et al. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan province, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:513-522. DOI:10.1109/JSTARS.2020.2968568. [78] 耿乃光,崔承禹,邓明德.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报, 1992, 14(S1):645-652. GENG Naiguang, CUI Chengyu, DENG Mingde. Remote sensing observations in rock fracture experiments and the beginning of remote sensing rock mechanics[J]. Acta Seismologica Sinica, 1992, 14(S1):645-652. [79] 邓明德,樊正芳,崔承禹,等.无源微波遥感用于地震预报的实验研究[J].红外与毫米波学报, 1995, 14(6):401-406. DENG Mingde, FAN Zhengfang, CUI Chengyu, et al. The experimental study for earthquake prediction by passive microwave remote sensing[J]. Journal of Infrared and Millimeter Waves, 1995, 14(6):401-406. [80] WU Lixin, ZHENG Shuo, DE SANTIS A, et al. Geosphere coupling and hydrothermal anomalies before the 2009Mw6.3 L'Aquila earthquake in Italy[J]. Natural Hazards and Earth System Sciences, 2016, 16(8):1859-1880. DOI:10.5194/nhess-16-1859-2016. [81] LIU Shanjun, XU Zhongyin, WEI Jialei, et al. Experimental study on microwave radiation from deforming and fracturing rock under loading outdoor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9):5578-5587. DOI:10.1109/TGRS.2016.2569419. [82] 毛文飞,吴立新,刘善军,等.干、湿沙层对岩石受力微波辐射影响的实验对比[J].东北大学学报(自然科学版), 2018, 39(5):710-715. MAO Wenfei, WU Lixin, LIU Shanjun, et al. Experiment comparison on microwave radiation from stressed rock covered by materials:dry or humid Sands[J]. Journal of Northeastern University (Natural Science), 2018, 39(5):710-715. [83] SARAF A K, RAWAT V, CHOUDHURY S, et al. Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(6):373-379. DOI:10.1016/j.jag.2009.07.003. [84] MIENERT J, POSEWANG J, BAUMANN M. Gas hydrates along the northeastern Atlantic margin:possible hydrate-bound margin instabilities and possible release of methane[J]. Geological Society, London, Special Publications, 1998, 137(1):275-291. DOI:10.1144/GSL.SP.1998.137.01.22. [85] QI Yuan, WU Lixin, DING Yifan, et al. Microwave brightness temperature (MBT) background in Bayan Har Block, Qinghai-Tibet Plateau and its importance in searching for seismic MBT anomalies[J]. Remote Sensing, 2022, 14(3):534. DOI:10.3390/rs14030534. [86] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(S1):234-240. [87] GOODCHILD M F. GIScience, geography, form, and process[J]. Annals of the Association of American Geographers, 2004, 94(4):709-714. [88] QI Yuan, WU Lixin, HE Miao, et al. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly:May 2008 Wenchuan earthquake sequence being a case[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:382-391. DOI:10.1109/JSTARS.2019.2962719. [89] QI Yuan, WU Lixin, DING Yifan, et al. Extraction and discrimination of MBT anomalies possibly associated with the Mw 7.3 Maduo (Qinghai, China) earthquake on 21 May 2021[J]. Remote Sensing, 2021, 13(22):4726. DOI:10.3390/rs13224726. [90] QI Yuan, WU Lixin, MAO Wenfei, et al. Discriminating possible causes of microwave brightness temperature positive anomalies related with May 2008 Wenchuan earthquake sequence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):1903-1916. DOI:10.1109/TGRS.2020.3004404. [91] QI Yuan, WU Lixin, DING Yifan, et al. Microwave brightness temperature anomalies associated with the 2015Mw 7.8 Gorkha and Mw 7.3 Dolakha earthquakes in Nepal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4500611. DOI:10.1109/TGRS.2020.3036079. [92] FREUND F. Toward a unified solid state theory for pre-earthquake signals[J]. Acta Geophysica, 2010, 58(5):719-766. DOI:10.2478/s11600-009-0066-x. [93] DING Yifan, QI Yuan, WU Lixin, et al. Discriminating the multi-frequency microwave brightness temperature anomalies relating to 2017Mw 7.3 Sarpol Zahab (Iran-Iraq Border) Earthquake[J]. Frontiers in Earth Science, 2021, 9:656216. DOI:10.3389/feart.2021.656216. [94] QI Yuan, WU Lixin, MAO Wenfei, et al. Satellite passive microwave remote sensing for seismic thermal anomaly:phenomena and mechanisms[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels:IEEE, 2021:8696-8699. DOI:10.1109/IGARSS47720.2021.9553690. [95] QI Yuan, MIAO Zelang, WU Lixin, et al. Seismic microwave brightness temperature anomaly detection using multitemporal passive microwave satellite images:ideas and limits[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:6792-6806. DOI:10.1109/JSTARS.2021.3093819. [96] 毛文飞.岩石受压微波辐射及介电变化的实验观测与机理分析[D].沈阳:东北大学, 2020. MAO Wenfei. Experimental observation and mechanism analysis of microwave radiation and dielectric changes of rock under compression[D]. Shenyang:Northeastern University, 2020. [97] GAO Xiang, LIU Shanjun, WU Lixin, et al. The variation in microwave brightness temperature of granite pressed under weak background radiation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1369-1381. DOI:10.1109/TGRS.2020.2994439. [98] GAO Xiang, LIU Shanjun, WU Lixin, et al. The anisotropy and polarization of stress-induced microwave radiation changes in granite and their significance for seismic remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9):7603-7617. DOI:10.1109/TGRS.2020.3034126. [99] MAO Wenfei, WU Lixin, QI Yuan. Impact of compressive stress on microwave dielectric properties of feldspar specimen[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):1398-1408. DOI:10.1109/TGRS.2019.2946155. [100] MAO Wenfei, WU Lixin, XU Youyou, et al. Change in diorite microwave dielectric property at the free end upon compressive stress application to the other end[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4506613. DOI:10.1109/TGRS.2021.3125992. [101] PULINETS S, OUZOUNOV D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation[J]. Journal of Asian Earth Sciences, 2011, 41(4-5):371-382. DOI:10.1016/j.jseaes.2010.03.005. [102] WU Lixin, LIU Shanjun. Remote sensing rock mechanics and earthquake thermal infrared anomalies[M]//JEDLOVEC G. Advances in Geoscience and Remote Sensing. Vukovar:IntechOpen, 2009. DOI:10.5772/8292. [103] WU Lixin, QIN Kai, LIU Shanjun, et al. Importance of lithosphere-coversphere-atmosphere coupling to earthquake anomaly recognition[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:3532-3535. DOI:10.1109/IGARSS.2012.6350657. [104] WU Lixin, QIN Kai, LIU Shanjun. GEOSS-based thermal parameters analysis for earthquake anomaly recognition[J]. Proceedings of the IEEE, 2012, 100(10):2891-2907. DOI:10.1109/JPROC.2012.2184789. [105] QIN Kai, WU Lixin, DE SANTIS A, et al. Quasi-synchronous multi-parameter anomalies associated with the 2010-2011 New Zealand earthquake sequence[J]. Natural Hazards and Earth System Sciences, 2012, 12(4):1059-1072. DOI:10.5194/nhess-12-1059-2012. [106] QIN Kai, WU Lixin, ZHENG Shuo, et al. A deviation-time-space-thermal (DTS-T) method for global earth observation system of systems (GEOSS)-based earthquake anomaly recognition:criterions and quantify indices[J]. Remote Sensing, 2013, 5(10):5143-5151. DOI:10.3390/rs5105143. [107] QIN Kai, ZHENG Shuo, WU Lixin, et al. Quasi-synchronous multi-parameter anomalies before Wenchuan and Yushu earthquakes in China[J]. The European Physical Journal Special Topics, 2021, 230(1):263-274. DOI:10.1140/epjst/e2020-000253-3. [108] WIGNERON J P, CHANZY A, CALVET J C, et al. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields[J]. Remote Sensing of Environment, 1995, 51(3):331-341. DOI:10.1016/0034-4257(94)00081-W. [109] CALVET J C, WIGNERON J P, WALKER J, et al. Sensitivity of passive microwave observations to soil moisture and vegetation water content:L-band to W-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4):1190-1199. DOI:10.1109/TGRS.2010.2050488. [110] HOLMES T R H, DE JEU R A M, OWE M, et al. Land surface temperature from Ka band (37GHz) passive microwave observations[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D4):D04113. DOI:10.1029/2008JD010257. [111] 吴立新,毛文飞,刘善军,等.岩石受力红外与微波辐射变化机理及地应力遥感关键问题[J].遥感学报, 2018, 22(S1):146-161. DOI:10.11834/jrs.20187256. WU Lixin, MAO Wenfei, LIU Shanjun, et al. Mechanisms of altering infrared-microwave radiation from stressed rock and key issues on crust stress remote sensing[J]. Journal of Remote Sensing, 2018, 22(S1):146-161. DOI:10.11834/jrs.20187256. [112] YU Jieqing, WU Lixin, ZI Guojie, et al. SDOG-based multi-scale 3D modeling and visualization on global lithosphere[J]. Science China Earth Sciences, 2012, 55(6):1012-1020. DOI:10.1007/s11430-012-4387-2. [113] YU Jieqing, WU Lixin, LI Zhifeng, et al. An SDOG-based intrinsic method for three-dimensional modelling of large-scale spatial objects[J]. Annals of GIS, 2012, 18(4):267-278. DOI:10.1080/19475683.2012.727865. [114] 吴立新,余接情,杨宜舟,等.基于地球系统空间格网的全球大数据空间关联与共享服务[J].测绘科学技术学报, 2013, 30(4):409-415, 438. WU Lixin, YU Jieqing, YANG Yizhou, et al. ESSG-based global big data spatially correlate and its share service[J]. Journal of Geomatics Science and Technology, 2013, 30(4):409-415, 438. |
[1] | 吴立新, 秦凯, 刘善军. 断裂活动及孕震过程遥感热异常分析的研究进展[J]. 测绘学报, 2017, 46(10): 1470-1481. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||