测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1575-1587.doi: 10.11947/j.AGCS.2022.20220142
彭认灿1,2, 董箭1,2, 贾帅东1,2, 唐露露1,2, 王芳3
收稿日期:
2022-02-28
修回日期:
2022-07-17
发布日期:
2022-08-13
通讯作者:
董箭
E-mail:navydj@163.com
作者简介:
彭认灿(1963-),男,博士,教授,研究方向为海图制图理论与方法。E-mail:pengrencan63@163.com
基金资助:
PENG Rencan1,2, DONG Jian1,2, JIA Shuaidong1,2, TANG Lulu1,2, WANG Fang3
Received:
2022-02-28
Revised:
2022-07-17
Published:
2022-08-13
Supported by:
摘要: 水深是反映海底地形起伏形态的基本要素,是人类认识和利用海洋并进行科学决策的重要依据。数字水深模型是用离散水深数据实现对海底地形起伏变化的一种数字化表达。数字水深模型建模技术与所构建模型的质量、特点及应用领域密切相关,直接决定了海底地形表达的真实可靠性和精度,并将对舰船航行的安全性及其他相关应用产生重要影响,一直是海道测量和海图制图人员科学研究与海洋测绘地理信息产品生产实践关注的核心内容。本文在总结数字水深模型概念内涵的基础上,结合国内外数字水深模型建模技术现状,重点阐述了数字水深模型在航海和非航海领域的研究进展及取得的成果,并对数字水深模型建模技术的未来发展方向做出了展望。
中图分类号:
彭认灿, 董箭, 贾帅东, 唐露露, 王芳. 数字水深模型建模技术研究进展与展望[J]. 测绘学报, 2022, 51(7): 1575-1587.
PENG Rencan, DONG Jian, JIA Shuaidong, TANG Lulu, WANG Fang. Research progress and prospect of digital depth model constructing technology[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1575-1587.
[1] 陈轶.数字水深模型的构建及多尺度表达研究[D].大连:海军大连舰艇学院, 2011. CHEN Yi. Research on the construction and multi-scale representation of digital depth model[D]. Dalian:Dalian Naval Academy, 2011. [2] 董箭.格网水深插值优化及滚动球变换处理方法研究[D].大连:海军大连舰艇学院, 2013. DONG Jian. Research on grid depth interpolation and rolling ball transform processing[D]. Dalian:Dalian Naval Academy, 2013. [3] 贾帅东.航海DDM的构建理论与方法[D].大连:海军大连舰艇学院, 2015. JIA Shuaidong. Theory and method for constructing navigation DDM[D]. Dalian:Dalian Naval Academy, 2015. [4] 张立华,贾帅东,董箭,等.数字水深模型构建理论与方法[M].北京:测绘出版社, 2019. ZHANG Lihua, JIA Shuaidong, DONG Jian, et al. Theory and methods for constructing digital depth model[M]. Beijing:Surveying and Mapping Press, 2019. [5] 彭认灿,于彩霞,董箭,等.数字海图制图[M].北京:测绘出版社, 2021. PENG Rencan, YU Caixia, DONG Jian, et al. Digital chart cartography[M]. Beijing:Surveying and Mapping Press, 2021. [6] 董箭,彭认灿,张立华,等.数字水深优化建模及滚动球处理技术研究[M].北京:测绘出版社, 2020. DONG Jian, PENG Rencan, ZHANG Lihua, et al. Research on optimization digital depth modeling and rolling ball transform processing[M]. Beijing:Surveying and Mapping Press, 2020. [7] ADAMS R. Seamless data and vertical datums-reconciling chart datum with a global reference frame[J].Hydrographical Journal, 2004, 18(11):14-39. [8] SMITH S. The navigation surface:a multipurpose bathy-metric database[D]. Durham, New Hampshire:University of New Hampshire, 2003. [9] CALDER B R, BYRNE S, LAMEYB, et al. The open navigation surface project[J]. International Hydrographic Review, 2005, 6(2):9-18. [10] CALDER B R, BYRNE S, LAMEY B, et al. The open navigation surface project[J]. International Hydrographic Review, 2005, 6(2):9-18. [11] MAYER L A, RAYMOND R, GLANG G, et al. High-resolution mapping of mines and ripples at the Martha's vineyard coastal observatory[J]. IEEE Journal of Oceanic Engineering, 2007, 32(1):133-149. [12] 翟京生.多波束测量技术与海洋测绘工序的调整[J].武汉大学学报(信息科学版), 2007, 32(11):994-997. ZHAI Jingsheng. A more streamlined hydrographic workflow from high-density surveys[J].Geomatics and Information Science of Wuhan University, 2007, 32(11):994-997. [13] International Hydrographic Organization. Special publication N°44 IHO standards for hydrographic surveys[S]. 5th ed. Monaco:International Hydrographic Bureau, 2008. [14] 张立华,苏奋振,彭认灿,等.基于瞬时水深模型的最短时间航线自动生成算法[J].测绘学报, 2010, 39(5):516-521. ZHANG Lihua, SU Fenzhen, PENG Rencan, et al. A method for the shortest time routing based on an instantaneous depth model[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5):516-521. [15] CALDER B. Bathymetric uncertainty and composite products, quantifying, predicting and exploiting uncertainty[C]//Proceedings of 2010 Annual Meeting U.S. Office of Naval Research. Taipei, China:[s.n.], 2010. [16] International Hydrographic Organization. S-12 Bathymetric surface product specification (Edition 1.0)[S]. Monaco:International Hydrographic Bureau, 2012.) [17] KLENKE M, SCHENKE H W. A new bathymetric model for the central Fram Strait[J]. Marine Geophysical Researches, 2002, 23(4):367-378. [18] 高金耀,金翔龙,吴自银.多波束数据的海底数字地形模型构建[J].海洋通报, 2003, 22(1):30-38. GAO Jinyao, JIN Xianglong, WU Ziyin. Construction of submarine DTM from raw multibeam data[J]. Marine Science Bulletin, 2003, 22(1):30-38. [19] 贾俊涛,翟京生,孟婵媛,等.基于海量多波束数据的海底地形模型的构建与可视化[J].测绘科学技术学报, 2008, 25(4):255-259. JIA Juntao,ZHAI Jingsheng, MENG Chanyuan, et al. Construction and visualization of submarine DEM based on large number of multibeam data[J]. Journal of Geomatics Science and Technology, 2008, 25(4):255-259. [20] MILLER J J, MORTIMER K, MILLER V S, et al. The port of Norfolk project feature management in support of high-resolution navigational products[C]//Proceedings of 2011 US Hydrographic Conference. Tampa, FL, USA:[s.n.], 2011:25-28. [21] WONG A M, CAMPAGNOLI J G, COLE M A. Assessing 155 years of hydrographic survey data for high resolution bathymetry grids[C]//Proceedings of 2007 OCEANS. Vancouver, BC, Canada:IEEE, 2007:1-8. [22] BOLMER S T, BEARDSLEY R C, PUDSEY C, et al. A high-resolution bathymetry map for the marguerite bay and adjacent west Antarctic peninsula shelf for the southern ocean GLOBEC program[R]. Woods Hole, MA:Woods Hole Oceanographic Institution, 2004. [23] British Crown and Sea Zone Solutions Ltd. Comparison of surveyed and charted bathymetry[R]. Taunton, British:Seabed Data Center, 2007. [24] 张立华,贾帅东,吴超,等.顾及不确定度的数字水深模型内插方法[J].测绘学报, 2011, 40(3):359-365. ZHANG Lihua, JIA Shuaidong, WU Chao, et al. A method for interpolating digital depth model considering uncertainty[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(3):359-365. [25] RICE G, CALDER B. A quantitative approach to the resolution of bathymetric representation[C]//Proceedings of 2009 U.S. Hydro Proceedings. New Orleans, LA, USA:[s.n.], 2009. [26] HARE R, EAKINS B, AMANTE C, et al. Modeling bathymetric uncertainty[C]//Proceedings of 2011 United States Hydrographic Conference Tampa. Tampa, FL, USA:[s.n.], 2011:25-28. [27] 吴超,殷晓冬,张立华,等.基于不确定度的多波束测深数据质量评估方法[J].海洋测绘, 2009, 29(5):11-14. WU Chao, YIN Xiaodong, ZHANG Lihua, et al. The method of quality estimation in multibeam sounding data based on uncertainty[J]. Hydrographic Surveying and Charting, 2009, 29(5):11-14. [28] 吴超.水深不确定度评估及应用研究[D].大连:海军大连舰艇学院, 2009. WU Chao. Evaluation and application of depth uncertainty[D]. Dalian:Dalian Naval Academy, 2009. [29] 曹鸿博.数字水深模型的精化及舰船导航应用[D].大连:海军大连舰艇学院, 2010. CAO Hongbo. Refinement of digital depth model and its application in ship navigation[D]. Dalian:Dalian Naval Academy, 2010. [30] 贾帅东.基于不确定度调控的高精度高保证率网格水深建模[D].大连:海军大连舰艇学院, 2011. JIA Shuaidong. High precision and assurance grid depth modeling based on uncertainty regulation[D]. Dalian:Dalian Naval Academy, 2011. [31] 贾帅东,张立华,宋国大,等.基于区域平均垂直不确定度的自适应网格水深建模方法[J].测绘学报, 2012, 41(3):454-460. JIA Shuaidong, ZHANG Lihua, SONG Guoda, et al. A method for constructing an adaptive grid digital depth model based on mean vertical uncertainty of area[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3):454-460. [32] 张立华,贾帅东,元建胜,等.一种基于不确定度的水深控浅方法[J].测绘学报, 2012, 41(2):184-190. ZHANG Lihua, JIA Shuaidong, YUAN Jiansheng, et al. A method for controlling shoal-bias based on uncertainty[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2):184-190. [33] 贾帅东,张立华,彭认灿,等.基于多波束数据的网格水深模型内插方法精度分析[J].海洋测绘, 2013, 33(5):24-26, 37. JIA Shuaidong, ZHANG Lihua, PENG Rencan, et al. The accuracy analysis for grid depth model interpolations based on multibeam echosounder data[J]. Hydrographic Surveying and Charting, 2013, 33(5):24-26, 37. [34] ZHANG Lihua, JIA Shuaidong, PENG Rencan, et al. A quantitative method to control and adjust the accuracy of adaptive grid depth modeling[J]. Marine Geodesy, 2013, 36(4):408-427. [35] 贾帅东,刘一帆,张立华,等.水深源数据不确定度在TIN水深建模中的传播规律分析[J].海洋测绘, 2014, 34(3):17-19, 24. JIA Shuaidong, LIU Yifan, ZHANG Lihua, et al. Propagation analysis of depth source data uncertainty in TIN depth modeling[J]. Hydrographic Surveying and Charting, 2014, 34(3):17-19, 24. [36] 张立华,贾帅东,王涛,等.深度保证率和表达度指标的定义及评估方法[J].武汉大学学报(信息科学版), 2015, 40(5):695-700. ZHANG Lihua, JIA Shuaidong, WANG Tao, et al. Definitions and estimating methods of a probability of an adequate depth and representiveness[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):695-700. [37] 贾帅东,张立华,彭认灿,等.确保水深模型航海安全性的深度保证率控制方法[J].交通运输工程学报, 2015, 15(5):101-109. JIA Shuaidong, ZHANG Lihua, PENG Rencan, et al. Control method of probability of adequate depth ensuring navigation safety of depth model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5):101-109. [38] 曹鸿博,张立华,张梅彩,等.服务航海与非航海的DDM质量指标之间的关系研究[J].测绘科学技术学报, 2016, 33(5):529-533, 539. CAO Hongbo, ZHANG Lihua, ZHANG Meicai, et al. Study of relation of digital depth model quality index between navigational and non-navigational services[J]. Journal of Geomatics Science and Technology, 2016, 33(5):529-533, 539. [39] 曹鸿博,张立华,陈秋,等.航海用DDM向非航海用转换时的整体偏差补偿方法[J].测绘通报, 2017(7):132-136. DOI:10.13474/j.cnki.11-2246.2017.0240. CAO Hongbo, ZHANG Lihua, CHEN Qiu, et al. A method for compensating the whole deviation of the transformation from DDM for navigation to DDM for non-navigation[J]. Bulletin of Surveying and Mapping, 2017(7):132-136. DOI:10.13474/j.cnki.11-2246.2017.0240. [40] 曹鸿博,张立华,张梅彩,等.不同类型DDM相互应用的质量分析[J].海洋测绘, 2017, 37(5):64-67. CAO Hongbo, ZHANG Lihua, ZHANG Meicai, et al. A quality analysis of exchanged applications of different types of digital depth models[J]. Hydrographic Surveying and Charting, 2017, 37(5):64-67. [41] 曹鸿博,张立华,黄文骞,等.非航海用DDM向航海应用转换的方法[J].测绘通报, 2018(1):83-87. DOI:10.13474/j.cnki.11-2246.2018.0015. CAO Hongbo, ZHANG Lihua,HUANG Wenqian, et al. A method of the transformation from DDM for non-navigation to DDM for navigation[J]. Bulletin of Surveying and Mapping, 2018(1):83-87. DOI:10.13474/j.cnki.11-2246.2018.0015. [42] 曹鸿博,张立华,贾帅东,等.不同尺度DDM的深度保证率变化规律研究[J].海洋测绘, 2018, 38(3):21-25. CAO Hongbo, ZHANG Lihua, JIA Shuaidong, et al. Study on the change rule of probability of an adequate depth for DDM with different scales[J]. Hydrographic Surveying and Charting, 2018, 38(3):21-25. [43] 贾帅东,张立华,董箭,等.利用拟构模型面调控水深模型点选取的航海DDM构建[J].武汉大学学报(信息科学版), 2019, 44(11):1715-1722. JIA Shuaidong, ZHANG Lihua, DONG Jian, et al. A method for constructing DDM serving for navigation using pre-constructed model surface to control and adjust the selection of DDM nodes[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11):1715-1722. [44] CHRISTENSEN A H J. Cartographic line generalization with waterlines and medial-axes[J]. Cartography and Geographic Information Science, 1999, 26(1):19-32. [45] 董箭,彭认灿,陈轶,等.一种基于缓冲区边界相向逼近求交模型的曲线间中心线生成算法[J].武汉大学学报(信息科学版), 2011, 36(9):1120-1123. DONG Jian, PENG Rencan, CHEN Yi, et al. An algorithm for centre line generation based on model of approaching intersection of buffering borderline from reciprocal direction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1120-1123. [46] CHRISTENSEN A H J. Two experiments on stream network generalization[C]//Proceedings of the 21st International Cartographic Conference. Durban, South Africa:[s.n.], 2003. [47] THOMAS P. 3D nautical charts and safe navigation[D]. Eskilstuna:Malardalen University, 2006. [48] 高王军.双向缓冲区模型在海图自动制图综合中的应用研究[D].大连:海军大连舰艇学院, 2009. GAO Wangjun. Application of bidirectional buffer model in automatic cartographic generalization of nautical charts[D]. Dalian:Dalian Naval Academy, 2009. [49] 董箭,彭认灿,张立华,等.利用滚动圆变换的多波束测深数据滤波算法[J].武汉大学学报(信息科学版), 2016, 41(1):86-92. DONG Jian, PENG Rencan,ZHANG Lihua, et al. An algorithm of filtering noises in multi-beam data based on rolling circle transform[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):86-92. [50] 董箭,彭认灿,张立华,等.滚动球变换的数字水深模型多尺度表达[J].地球信息科学学报, 2012, 14(6):704-711. DONG Jian, PENG Rencan, ZHANG Lihua, et al. Multi-scale representation of digital depth model based on rolling ball transform[J]. Journal of Geo-Information Science, 2012, 14(6):704-711. [51] 董箭,彭认灿,郑义东,等.基于滚动球模型的单值曲面缓冲体边界生成算法[J].计算机辅助设计与图形学学报, 2013, 25(7):996-1004. DONG Jian, PENG Rencan, ZHENG Yidong, et al. An algorithm of 3D-buffer boundary generation for singular value surface based on rolling ball model[J]. Journal of Computer-Aided Design&Computer Graphics, 2013, 25(7):996-1004. [52] 董箭,彭认灿,郑义东.三维完全欧氏距离变换的改进算法[J].海洋测绘, 2013, 33(1):5-8. DONG Jian, PENG Rencan, ZHENG Yidong. Improved algorithm of complete three-dimensional Euclidean distance transform[J]. Hydrographic Surveying and Charting, 2013, 33(1):5-8. [53] 董箭,彭认灿,孔海英,等.基于滚动球变换的数字海底地形分割算法[C]//第二十八届海洋测绘综合性学术研讨会.北京:海潮出版社, 2016:206-210. DONG Jian, PENG Rencan, KONG Haiying, et al. Digital seabed terrain segmentation algorithm based on rolling ball transform[C]//Proceedings of the 28th Comprehensive Symposium on Marine Surveying and Mapping. Beijing:Haichao Publishing House, 2016:206-210. [54] 董箭,彭认灿,张立华,等.顾及"保真性"原则的双向滚动球变换DDM多尺度表达算法[J].测绘学报, 2017, 46(6):789-801. DOI:10.11947/j.AGCS.2017.20160558. DONG Jian, PENG Rencan, ZHANG Lihua, et al. Multi-scale representation of digital depth model based on double direction rolling ball transform according to the reality principle[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):789-801. DOI:10.11947/j.AGCS.2017.20160558. [55] 行瑞星,武芳,李靖涵,等.一种顾及多义性的等深线快速生成算法[J].计算机辅助设计与图形学学报, 2017, 29(9):1705-1712. XING Ruixing, WU Fang, LI Jinghan, et al. A fast algorithm of contour generation considering ambiguity[J]. Journal of Computer-Aided Design&Computer Graphics, 2017, 29(9):1705-1712. [56] 张志衡.测深数据滤波处理及基于滚动球变换的航海TIN_DDM构建方法优化研究[D].大连:海军大连舰艇学院, 2019. ZHANG Zhiheng. Filtering processing of sounding data and optimization of navigation TIN-DDM construction method based on rolling ball transformation[D]. Dalian:Dalian Naval Academy, 2019. [57] 李改肖,张志衡,董箭.滚动球路径模型的Delaunay三角网局部优化算法[J].测绘科学, 2020, 45(4):156-160. LI Gaixiao, ZHANG Zhiheng, DONG Jian. Local optimization algorithm of Delaunay triangulation network based on rolling ball path model[J]. Science of Surveying and Mapping, 2020, 45(4):156-160. [58] International Hydrographic Organization. S-100universal hydrographic data model (Edition 1.0)[S]. Monaco:International Hydrographic Bureau, 2010. [59] 夏伟,黄谟涛,刘雁春,等.多波束测深数据抽稀准则研究[J].测绘科学, 2010, 35(S1):17-19. XIA Wei, HUANG Motao, LIU Yanchun, et al. Research on the rule of multibeam echo sounding system data thinning[J]. Science of Surveying and Mapping, 2010, 35(S1):17-19. [60] CALDER B R. Distribution-free, variable resolution depth estimation with composite uncertainty[C]//Proceedings of 2013 U.S. Hydrographic Conference. New Orleans, LA, USA:International Hydrographic Organization, 2013:25-27. [61] 訾桂峰,程秀丽,刘毅,等.面向地形匹配的多波束测深数据抽稀方法研究[J].海洋工程, 2013, 31(6):118-123. ZI Guifeng, CHENG Xiuli, LIU Yi, et al. New thinning method of multi-beam bathymetric data based on terrain matching[J]. The Ocean Engineering, 2013, 31(6):118-123. [62] 刘现鹏,张立华,贾帅东,等.基于自适应格网数字水深模型的水下地形匹配定位算法[J].中国惯性技术学报, 2017, 25(4):488-494. LIU Xianpeng, ZHANG Lihua, JIA Shuaidong, et al. Underwater terrain matching algorithm based on adaptive grid digital depth model[J]. Journal of Chinese Inertial Technology, 2017, 25(4):488-494. [63] 刘现鹏.高精度、高鲁棒性水下地形匹配定位关键技术研究[D].大连:海军大连舰艇学院, 2018. LIU Xianpeng. Research on key technologies of underwater terrain matching location with high accuracy robustness[D]. Dalian:Dalian Naval Academy, 2018. [64] 毋河海.地形图等高线树的建立[J].武汉测绘科技大学学报, 1995, 20(S1):15-19. WU Hehai. Establishment of contour tree in topographic map[J]. Journal of Wuhan University of Surveying and Mapping Science and Technology, 1995, 20(S1):15-19. [65] 王涛.地貌信息提取中的结构化问题研究[D].武汉:武汉大学, 2005. WANG Tao. Extraction of structural geomorphometrical information from digital elevation models[D]. Wuhan:Wuhan University, 2005. [66] 王海栋,柴洪洲,赵东明.基于抗差最小二乘配置的海底地形生成研究[J].系统仿真学报, 2010, 22(9):2091-2094, 2099. WANG Haidong, CHAI Hongzhou, ZHAO Dongming. Research on seabed terrain generation based on robust least-squares collocation[J]. Journal of System Simulation, 2010, 22(9):2091-2094, 2099. [67] 王海栋,柴洪洲,王敏.多波束测深数据的抗差Kriging拟合[J].测绘学报, 2011, 40(2):238-242, 248. WANG Haidong, CHAI Hongzhou, WANG Min. Multibeam bathymetry fitting based on robust Kriging[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):238-242, 248. [68] 李守军,吴自银.基于总传播误差法构建海底地形模型[J].辽宁工程技术大学学报(自然科学版), 2011, 30(1):73-76. LI Shoujun, WU Ziyin. Total propagated error computation algorithm and its application in processing of multi-beam data[J]. Journal of Liaoning Technical University (Natural Science), 2011, 30(1):73-76. [69] 卢银宏,岳东杰,宋飞凤.基于总体最小二乘的Douglas-Peucker算法在多波束测深数据抽稀中的应用[J].水利与建筑工程学报, 2012, 10(2):4-5, 13. LU Yinhong, YUE Dongjie, SONG Feifeng. Application of Douglas-Peucker algorithm based on total least square in data thinning of multibeam sounding[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(2):4-5, 13. [70] STATECZNY A, WLODARCZYK-SIELICKA M. Self-organizing artificial neural networks into hydrographic big data reduction process[C]//Proceedings of the 2nd International Conference on Rough Sets and Intelligent Systems Paradigms. Granada and Madrid, Spain:Springer, 2014:335-342. [71] WU Ziyin, SHANG Jihong, LI Shoujun, et al. Multi-beam bathymetric chart construction method based on submarine digital depth model feature extraction:US, 9651698[P]. 2017-05-16. [72] 张志衡,彭认灿,黄文骞,等.考虑自然邻点影响域的多波束测深数据趋势面滤波改进算法[J].测绘学报, 2018, 47(1):35-47. DOI:10.11947/j.AGCS.2018.20160565. ZHANG Zhiheng, PENG Rencan, HUANG Wenqian, et al. An improved algorithm of tendency surface filtering in multi-beam bathymetric data considering the natural neighboring points influence field[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):35-47. DOI:10.11947/j.AGCS.2018.20160565. [73] 董箭,张志衡,彭认灿,等.不规则三角网数字水深模型缓冲面快速构建的滚动球加速优化算法[J].测绘学报, 2019, 48(5):654-667. DOI:10.11947/j.AGCS.2019.20180455. DONG Jian, ZHANG Zhiheng, PENG Rencan, et al. TIN_DDM buffer surface construction algorithm based on rolling ball acceleration optimization model[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):654-667. DOI:10.11947/j.AGCS.2019.20180455. [74] DONG Jian, ZHANG Zhiheng, PENG Rencan, et al. TIN_DDM buffer surface construction algorithm based on rolling ball acceleration optimization model[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):88-103. DOI:10.11947/j.JGGS.2020.0309. [75] 张志衡,董箭,彭认灿,等.基于滚动球变换的TIN_DDM地形形态划分及连续尺度表达[J].测绘学报, 2020, 49(5):644-655. DOI:10.11947/j.AGCS.2020.20180527. ZHANG Zhiheng, DONG Jian, PENG Rencan, et al. Division of TIN_DDM topographic forms and continuous scale representation based on rolling ball transformation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):644-655. DOI:10.11947/j.AGCS.2020.20180527. [76] 李靖涵.海底地貌自动制图综合算法研究[D].郑州:信息工程大学, 2018. LI Jinghan. Research on automated cartographic generalization of submarine relief[D]. Zhengzhou:Information Engineering University, 2018. [77] 吕重阳.水下航行器路径规划关键技术研究[D].哈尔滨:哈尔滨工程大学, 2019. LV Chongyang. Research on key technologies of path planning for underwater vehicle[D]. Harbin:Harbin Engineering University, 2019. [78] 朱超.台湾浅滩沙波地形分解与重构方法研究[D].青岛:山东科技大学, 2019. ZHU Chao. Topographic decomposition and reconstruction of sand waves fields on the Taiwan banks[D]. Qingdao:Shandong University of Science and Technology, 2019. [79] 国家质量技术监督局.海道测量规范:GB 12327-1998[S].北京:中国标准出版社, 2004. The State Bureau of Quality and Technical Supervision. GB 12327-1998 Specifications for hydrographic survey[S]. Beijing:Standards Press of China, 2004. [80] 国家质量技术监督局. GB 12320-1998中国航海图编绘规范[S].北京:中国标准出版社, 1999. The State Bureau of Quality and Technical Supervision. GB 12320-1998 Specifications for Chinese nautical charts[S]. Beijing:Standards Press of China, 1999. [81] 刘雁春,肖付民,暴景阳,等.海道测量学概论[M].北京:测绘出版社, 2006. LIU Yanchun, XIAO Fumin, BAO Jingyang, et al. Introduction to hydrography[M]. Beijing:Surveying and Mapping Press, 2006. [82] 王家耀.现代化海洋测绘:建设海洋强国的重要保障[R].郑州:信息工程大学, 2016. WANG Jiayao. Modern marine surveying and mapping:an important guarantee for building a marine power[R]. Zhengzhou:Information Engineering University, 2016. [83] 单杰,秦昆,黄长青,等.众源地理数据处理与分析方法探讨[J].武汉大学学报(信息科学版), 2014, 39(4):390-396. SHAN Jie, QIN Kun, HUANG Changqing, et al. Methods of crowd sourcing geographic data processing and analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):390-396. [84] 袁浩,贾帅东,张立华,等.风浪对众包测深数据的精度影响分析[J].海洋测绘, 2020, 40(6):34-38. YUAN Hao, JIA Shuaidong, ZHANG Lihua, et al. Analysis on the influence of wind waves on the precision of crowdsourced bathymetric data[J]. Hydrographic Surveying and Charting, 2020, 40(6):34-38. [85] THORNTON T. TeamSurv-surveying with the crowd:the application of crowdsourcing to hydrographic surveying[EB/OL].(2011-07-15)[2020-12-23]. https://www.hydro-international.com/content/article/teamsurv-surveying-with-the-crowd. [86] THORNTON T. Teamsurv-crowdsourcing in hydrographic surveying[R]. UK:Team-Surv Ltd, 2016. [87] 黄辰虎,张卫东,张乾隆,等.联合WOA2018温盐模型及实测温盐资料重构全深度声速剖面(一):需求论证及技术方案[J].海洋测绘, 2020, 40(1):24-29. HUANG Chenhu, ZHANG Weidong, ZHANG Qianlong, et al. Reconstruction the full-depth sound speed profile with world ocean atlas 2018 and in-situ temperature and salinity in sea water, part Ⅰ:requirement demonstration and technology proposal[J]. Hydrographic Surveying and Charting, 2020, 40(1):24-29. [88] 黄辰虎,王梓,张晓娟,等.联合WOA2018温盐模型及实测温盐资料重构全深度声速剖面(二):精度评估[J].海洋测绘, 2020, 40(2):9-14. HUANG Chenhu, WANG Zi, ZHANG Xiaojuan, et al. Reconstruction of the full-depth sound speed profile with world ocean atlas 2018 and in-situ temperature and salinity in sea water, part Ⅱ:accuracy assessment[J]. Hydrographic Surveying and Charting, 2020, 40(2):9-14. [89] 黄辰虎,陆秀平,叶安娜,等.海底地形测量成果的质量检核评估(二):深远海海域声速剖面的获取[J].海洋测绘, 2017, 37(3):12-16, 20. HUANG Chenhu, LU Xiuping, YE Anna, et al. Examination and assessment of bathymetric surveying products, part Ⅱ:acquisition of sound speed profiles in the deep sea[J]. Hydrographic Surveying and Charting, 2017, 37(3):12-16, 20. [90] CALDER B R, DIJKSTRA S J, HOYS, et al. A design for a trusted community bathymetry system[J]. Marine Geodesy, 2020, 43(4):327-358. [91] REED A, KLEMM A. Crowdsourced bathymetry concept study using data logged with electronic charting systems[EB/OL].[2022-05-18]. https://hydrography.ca/wp-content/uploads/2020/04/Adam-Reed-CHC-ECS-Crowd-Source-Bathymetry.pdf. [92] WEATHERALL P, MARKS K M, JAKOBSSON M, et al. A new digital bathymetric model of the world's oceans[J]. Earth and Space Science, 2015, 2(8):331-345. [93] 袁浩,贾帅东,金绍华,等.利用GA-NN模型反演声速剖面的众源水深数据声速改正[J/OL].武汉大学学报(信息科学版):1-14[2022-07-06].DOI:10.13203/j.whugis20200515. YUAN Hao, JIA Shuaidong, JIN Shaohua, et al. Correction for crowdsourced bathymetry data by using GA-NN model to inverse sound velocity profiles[J/OL]. Geomatics and Information Science of Wuhan University:1-14[2022-07-06].DOI:10.13203/j.whugis20200515. [94] 邬金,王平,王久,等.众包水深测量的关键技术研究与分析[J].海洋测绘, 2020, 40(2):36-40. WU Jin, WANG Ping, WANG Jiu, et al. Research and analysis of key methods for crowdsourced bathymetry[J]. Hydrographic Surveying and Charting, 2020, 40(2):36-40. [95] 艾廷华,祝国瑞,张根寿.基于Delaunay三角网模型的等高线地形特征提取及谷地树结构化组织[J].遥感学报, 2003, 7(4):292-298. AI Tinghua, ZHU Guorui, ZHANG Genshou. Extraction of landform features and organization of valley tree structure based on delaunay triangulation model[J]. Journal of Remote Sensing, 2003, 7(4):292-298. [96] 汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005. TANG Guoan, LIU Xuejun, LV Guonian. The principle and method of digital elevation model and geoscience analysis[M]. Beijing:Science Press, 2005. [97] 王光霞,边淑莉,张寅宝.用回放等高线评估DEM精度的研究[J].测绘科学技术学报, 2010, 27(1):9-13. WANG Guangxia, BIAN Shuli, ZHANG Yinbao. Evaluating DEM accuracy based on reconstructed contours[J]. Journal of Geomatics Science and Technology, 2010, 27(1):9-13. [98] 何美章,朱庆,杜志强,等.从灾后机载激光点云自动检测损毁房屋的等高线簇分析方法[J].测绘学报, 2015, 44(4):407-413. DOI:10.11947/j.AGCS.2015.20130785. HE Meizhang, ZHU Qing, DU Zhiqiang, et al.Contour cluster shape analysis for building damage detection from post-earthquake airborne LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):407-413. DOI:10.11947/j.AGCS.2015.20130785. [99] 贾帅东,张立华,彭认灿.与等深线协调的水深自动选取方法[J].哈尔滨工程大学学报, 2016, 37(1):59-64. JIA Shuaidong, ZHANG Lihua, PENG Rencan. Method for automatic selection of water depth harmonizing with a depth contour[J]. Journal of Harbin Engineering University, 2016, 37(1):59-64. [100] 张立华,温连发,贾帅东.航海图等深线化简质量的定量评估指标与方法[J].武汉大学学报(信息科学版), 2018, 43(4):496-501, 508. ZHANG Lihua, WEN Lianfa, JIA Shuaidong. Indices and methods for evaluating quantificationally the quality of simplification of a depth-contour in nautical chart[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):496-501, 508. [101] 张立华,唐露露,贾帅东,等.多条海岸线协同化简的层次化三角网分区法[J].测绘学报, 2019, 48(4):520-531. DOI:10.11947/j.AGCS.2019.20180382. ZHANG Lihua, TANG Lulu, JIA Shuaidong, et al. A collaborative simplification method for multiple coastlines based on the hierarchical triangulation network partition[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):520-531. DOI:10.11947/j.AGCS.2019.20180382. |
[1] | 江碧涛. 我国空间对地观测技术的发展与展望[J]. 测绘学报, 2022, 51(7): 1153-1159. |
[2] | 李振洪, 朱武, 余琛, 张勤, 张成龙, 刘振江, 张雪松, 陈博, 杜建涛, 宋闯, 韩炳权, 周佳薇. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7): 1485-1519. |
[3] | 朱长青, 任娜, 徐鼎捷. 地理信息安全技术研究进展与展望[J]. 测绘学报, 2022, 51(6): 1017-1028. |
[4] | 刘洋, 吴自银, 赵荻能, 周洁琼, 尚继宏, 王明伟, 朱超, 鲁号号. MF多源测深数据融合方法及大洋水深模型构建[J]. 测绘学报, 2019, 48(9): 1171-1181. |
[5] | 董箭, 彭认灿, 张立华, 刘国辉, 朱强. 顾及“保真性”原则的双向滚动球变换DDM多尺度表达算法[J]. 测绘学报, 2017, 46(6): 789-801. |
[6] | 廖克. 中国地图学发展的回顾与展望[J]. 测绘学报, 2017, 46(10): 1517-1525. |
[7] | 贾帅东,张立华,宋国大,丁金挺. 基于区域平均垂直不确定度的自适应格网水深建模方法[J]. 测绘学报, 2012, 41(3): 0-416. |
[8] | 张立华,贾帅东,吴超,殷晓冬. 顾及不确定度的数字水深模型内插方法[J]. 测绘学报, 2011, 40(3): 359-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||