[1] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. [2] ZHENG F, LOU Y, GU S, et al. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning[J]. Journal of Geodesy, 2018, 92(5):545-560. DOI:10.1007/s00190-017-1080-4. [3] FAN Haopeng, SUN Zhongmiao, ZHANG Liping, et al. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):76-84. [4] SUN Z, ZHANG B, YAO Y. An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions[J]. Earth and Space Science, 2019, 6(10):1926-1941. DOI:10.1029/2019EA000701. [5] SUN Z, ZHANG B, YAO Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017[J]. Remote Sensing, 2019, 11(16):1893-1914. DOI:10.3390/rs11161893. [6] YAO Y, XU C, SHI J, et al. ITG:a new global GNSS tropospheric correction model[J]. Scientific reports, 2015,5:10273. DOI:10.1038/srep10273. [7] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441. DOI:10.1007/s10291-014-0403-7. [8] JIANG C, XU T, WANG S, et al. Evaluation of zenith tropospheric delay derived from ERA5 data over China using GNSS observations[J]. Remote Sensing, 2020, 12(4):663-682. DOI:10.3390/rs12040663. [9] LI J, ZHANG B, YAO Y, et al. A refined regional model for estimating pressure, temperature, and water vapor pressure for geodetic applications in China[J]. Remote Sensing, 2020, 12(11):1713-1723. DOI:10.3390/rs12111713. [10] XU C, YAO Y, SHI J, et al. Development of global tropospheric empirical correction model with high temporal resolution[J]. Remote Sensing, 2020, 12(4):721. DOI:10.3390/rs12040721. [11] Cy46r1. IFS DOCUMENTATION PART I:OBSERVATIONS[EB/OL].[2020-11-27]. https://www.ecmwf.int/node/19745. [12] ANDREI C O, CHEN R. Assessment of time-series of troposphere zenith delays derived from the global data assimilation system numerical weather model[J]. GPS Solutions, 2009, 13(2):109-117. DOI:10.1007/s10291-008-0104-1. [13] CHEN Q, SONG S, HEISE S, et al. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China[J]. GPS Solutions, 2011, 15:415-425. DOI:10.1007/s10291-010-0200-x. [14] 黄瑾芳, 楼益栋, 张卫星, 等. 再分析资料计算中国区域对流层延迟精度[J]. 测绘科学, 2018, 43(5):13-17. HUANG Jinfang, LOU Yidong, ZHANG Weixing, et al. Analysis of the ZTD calculated data from China[J]. Science of Surveying and Mapping, 2018,43(5):13-17. [15] 毛健, 崔铁军, 李晓丽, 等. 融合大气数值模式的高精度对流层天顶延迟计算方法[J]. 测绘学报, 2019, 48(7):862-870. DOI:10.11947/j.AGCS. 2019.20190003. MAO Jian, CUI Tiejun, LI Xiaoli, et al. A hight-accuracy method for tropospheric zenith delay error correction by fusing atmospheric numerical models[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):862-870. DOI:10.11947/j.AGCS. 2019.20190003. [16] Copernicus Climate Change Service. ERA5 monthly averaged data on pressure levels from 1950 to 1978(preliminary version)[EB/OL].[2021-03-04]. https://cds.climate.copernicus.eu/cdsapp/dataset/reanalysis-era5-pressurelevels?tab=eqc. [17] CMONOC. CMONOC基准站数据处理说明[EB/OL].[2021-05-04]. ftp://ftp.cgps.ac.cn/products, 2020.08. CMONOC. CMONOC Reference station data processing instructions[EB/OL].[2021-05-04]. ftp://ftp.cgps.ac.cn/products. [18] LANDSKRON D, BÖHM J. VMF3/GPT3:refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2018, 92(4):349-360. DOI:10.1007/s00190-017-1066-2. [19] BOEHM J, HEINKELMANN R, SCHUH H. Short note:a global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy, 2007, 81(10):679-683. DOI:10.1007/s00190-007-0135-3. [20] LU YINGWEI N S. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J]. IEEE Transactions on Neural Networks, 1998, 9(2):308-318. [21] 张伟, 黄卫民. 基于SAPSO算法的RBF神经网络设计[J]. 控制与决策, 2021, 36(9):2305-2312. ZHANG Wei, HUANG Weimin. Design of RBF neural network based on SAPSO algorithm[J]. Control and Decision, 2021, 36(9):2305-2312. [22] HUANG G B, SARATCHANDRAN P, SUNDARARAJAN N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(6):2284-2292. DOI:10.1109/tsmcb.2004.834428. [23] 翟莹莹, 左丽, 张恩德. 基于参数优化的RBF神经网络结构设计算法[J]. 东北大学学报(自然科学版), 2020, 41(2):176-181, 187. ZHAI Yingying, ZUO Li, ZHANG Ende. Algorithm for structure design of RBF neural network based on parameter optimization[J]. Journal of Northeastern University (Natural Science), 2020, 41(2):176-181, 187. [24] 梁泽, 王玥瑶, 岳远紊, 等. 耦合遗传算法与RBF神经网络的PM2.5浓度预测模型[J]. 中国环境科学, 2020, 40(2):523-529. LIANG Ze, WANG Yueyao, YUE Yuanwen, et al. A coupling model of genetic algorithm and RBF neural network for the prediction of PM2.5 concentration[J]. China Environmental Science, 2020, 40(2):523-529. [25] 陈黎飞, 姜青山, 王声瑞. 基于层次划分的最佳聚类数确定方法[J]. 软件学报, 2008,19(1):62-72. CHEN Lifei, JIANG Qingshan, WANG Shengrui. A hierarchical method for determining the number of clusters[J]. Journal of Software, 2008,19(1):62-72. |