[1] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted regression[J]. Journal of the Royal Statistical Society:Series D (the Statistician), 1998, 47(3):431-443. [2] HURVICH C M, SIMONOFF J S, TSAI C L. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 1998, 60(2):271-293. [3] BOWMAN A W. An alternative method of cross-validation for the smoothing of density estimates[J]. Biometrika, 1984, 71(2):353-360. [4] MA Zongwei, HU Xuefei, HUANG Lei, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014, 48(13):7436-7444. [5] 汤庆园, 徐伟, 艾福利. 基于地理加权回归的上海市房价空间分异及其影响因子研究[J]. 经济地理, 2012, 32(2):52-58. TANG Qingyuan, XU Wei, AI Fuli. A GWR-based study on spatial pattern and structural determinants of Shanghai's housing price[J]. Economic Geography, 2012, 32(2):52-58. [6] DUAN Sibo, LI Zhaoliang. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression:case study in Northern China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6458-6469. [7] 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45(9):1356-1366. LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9):1356-1366. [8] 胡炜, 刘永学, 林勇军. 基于GWR的住宅地价相对修正方法研究:以深圳市为例[J]. 中国土地科学, 2017, 31(9):62-69, 2, 97. HU Wei, LIU Yongxue, LIN Yongjun. Study on the correcting method of residential land price based on GWR:a case study of Shenzhen city[J]. China Land Sciences, 2017, 31(9):62-69, 2, 97. [9] WHEELER D, TIEFELSDORF M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression[J]. Journal of Geographical Systems, 2005, 7(2):161-187. [10] SAMKAR H, ALPU O. Ridge regression based on some robust estimators[J]. Journal of Modern Applied Statistical Methods, 2010, 9(2):495-501. [11] GUJARATI D, PORTER D. Basic econometrics[M]. New York:McGraw-Hill Education, 2008. [12] LLOYD C D. Analysing population characteristics using geographically weighted principal components analysis:a case study of Northern Ireland in 2001[J]. Computers, Environment and Urban Systems, 2010, 34(5):389-399. [13] STEWART F A, YANG W, KANG W. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6):1247-1265. [14] YU H, STEWART F A, LI Z, et al. On the measurement of bias in geographically weighted regression models[J]. Spatial Statistics, 2020, 38:100453. [15] POURMOHAMMADI P, STRAGER M P, DOUGHERTY M J, et al. Analysis of land development drivers using geographically weighted ridge regression[J]. Remote Sensing, 2021, 13(7):1307. [16] BELSLEY D A, KUH E, WELSCH R E. Regression diagnostics:identifying influential data and sources of collinearity[M]. New York:John Wiley & Sons, 1980. [17] FOX J, MONETTE G. Generalized collinearity diagnostics[J]. Journal of the American Statistical Association, 1992, 87(417):178-183. [18] JEUDY L M A. Generalyzed variance-covariance propagation law formulae and application to explicit least-squares adjustments[J]. Bulletin Géodésique, 1988, 62(2):113-124. [19] SONG Yingchun, XIA Yuguo, XIE Xuemei. Adjustment model and algorithm based on ellipsoid uncertainty[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):59-66. [20] OSHAN T, LI Z, KANG W, et al.MGWR:a python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):269. [21] YU H, STEWART F A, LI Z, et al. Inference in multiscale geographically weighted regression[J]. Geographical Analysis, 2020, 52(1):87-106. [22] RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3):569-575. [23] 归庆明, 姚绍文, 顾勇为, 等. 诊断复共线性的条件指标-方差分解比法[J]. 测绘学报, 2006,35(3):210-214. GUI Qingming, YAO Shaowen, GU Yongwei, et al. A new method to diagnose multicollinearity based on condition index and variance decomposition proportion(CIVDP)[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(3):210-214. [24] LI Tongwen, SHEN Huanfeng, ZENG Chao, et al. A validation approach considering the uneven distribution of ground stations for satellite-based PM2.5 estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1312-1321. [25] WANG Jun. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:implications for air quality studies[J]. Geophysical Research Letters, 2003, 30(21):2095. [26] ZHANG Tianhao, GONG Wei, WANG Wei, et al. Ground level PM2.5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI)[J]. International Journal of Environmental Research and Public Health, 2016, 13(12):1215. |