测绘学报 ›› 2023, Vol. 52 ›› Issue (7): 1187-1201.doi: 10.11947/j.AGCS.2023.20220491

• 高光谱遥感技术专刊 • 上一篇    下一篇

高光谱遥感图像亚像元信息提取方法综述

冯如意1,2, 王力哲1, 曾铁勇2   

  1. 1. 中国地质大学(武汉), 湖北 武汉 430074;
    2. 香港中文大学, 香港 沙田 999077
  • 收稿日期:2022-08-10 修回日期:2023-06-20 发布日期:2023-07-31
  • 通讯作者: 王力哲 E-mail:lizhe.wang@gmail.com
  • 作者简介:冯如意(1988-),女,博士,副教授,研究方向为高光谱遥感数据分析与处理。E-mail:fengry@cug.edu.cn
  • 基金资助:
    国家自然科学基金(41925007;U21A2013)

Review of hyperspectral remote sensing image subpixel information extraction

FENG Ruyi1,2, WANG Lizhe1, ZENG Tieyong2   

  1. 1. China University of Geosciences(Wuhan), Wuhan 430074, China;
    2. Chinese University of Hong Kong, Shatin 999077, China
  • Received:2022-08-10 Revised:2023-06-20 Published:2023-07-31
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41925007; U21A2013)

摘要: 高光谱遥感图像光谱分辨率高、波谱连续、图谱合一,这为精细地物分类、探测和识别提供了数据基础。然而,由于高光谱遥感图像空间分辨率的局限性及地物场景的复杂分布,混合像元普遍存在于高光谱遥感图像。混合像元是高光谱遥感图像精细信息提取与分析中的难点。解决混合像元问题,实现亚像元级信息的提取与分析是近年来高光谱遥感图像解译的热点和前沿。本文系统梳理了高光谱遥感图像亚像元信息提取的主要研究内容,具体从混合像元分解、亚像元制图及亚像元目标探测3个研究方向综述了经典方法,并对国内外相关方向的研究进展、发展前沿及主要挑战进行了分析与评价,最后分析讨论了高光谱遥感图像亚像元信息提取研究在模型构建、优化求解及与应用结合等方面的研究趋势及方向。

关键词: 高光谱遥感, 混合像元, 光谱分解, 亚像元制图, 亚像元目标探测

Abstract: Hyperspectral remote sensing image provides abundant data for precise landcover classification, target detection and object recognition, attributed to its unique advantages in very high spectral resolution, continuous spectum as well as the synchronous acquisition of both image and spectra of objects. Due to the limitation of the spatial resolution and the complicated scenes, mixed pixels are common in hyperspectral remote sensing images. The mixed pixel problem hinders the information extraction and analysis, and consequently, greatly weaks the potential application in various fields. It has become an important frontier scientific issue and hot spot to tackle the mixed pixel problem and realize the information extraction and analysis deep into subpixel scale for hyperspectral remote sensing imagery. This review generates a systematic summary for hyperspectral remote sensing image subpixel information extraction, and conducts a comprehensive review of the classical approaches from three aspects, namely, hyperspectral unmixing, subpixel mapping and subpixel target detection. Additionaly, this paper also analyzes and evaluates the current progress, development frontier and main challenges in related fields at home and abroad. Finally, the research trends and directions are discussed, especially in the aspects of model construction, optimization algorithm, and theoretical research and practical application combination.

Key words: hyperspectral remote sensing, mixed pixel, spectral unmixing, subpixel mapping, subpixel target detection

中图分类号: