[1] LI Xiang, HUA Yixin, LIU Wenbing. A method of road data aided inertial navigation by using learning to rank and ICCP algorithm[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 84-96. DOI: 10.11947/j.JGGS.2021.0407. [2] 铁俊波. 惯性导航重力补偿方法研究[D]. 长沙: 国防科技大学, 2018. TIE Junbo. Research on gravity compensation in inertial navigation[D]. Changsha: National University of Defense Technology, 2018. [3] 翁海娜, 陆全聪, 黄昆, 等. 旋转式光学陀螺捷联惯导系统的旋转方案设计[J]. 中国惯性技术学报, 2009, 17(1): 8-14. WENG Haina, LU Quancong, HUANG Kun, et al. Rotation scheme design for rotary optical gyro SINS[J]. Journal of Chinese Inertial Technology, 2009, 17(1): 8-14. [4] 常路宾, 覃方君, 查峰. 单轴旋转捷联惯导系统重力扰动补偿方法研究[J]. 导航定位与授时, 2018, 5(2): 12-16. CHANG Lubin, QIN Fangjun, ZHA Feng. Gravity disturbance compensation for single-axis rotary-modulation strapdown inertial navigation system[J]. Navigation Positioning and Timing, 2018, 5(2): 12-16. [5] 朱挺, 王丽芬, 王永让, 等. 双轴旋转惯导载体角运动隔离调制方法研究[J]. 仪器仪表学报, 2020, 41(12): 66-75. ZHU Ting, WANG Lifen, WANG Yongrang, et al. Carrier angular motion isolation and modulation method of dual-axis rotation inertial navigation system[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 66-75. [6] ZHOU Xiao, YANG Gongliu, WANG Jing, et al. A combined gravity compensation method for INS using the simplified gravity model and gravity database[J]. Sensors, 2018, 18(5): 1552. [7] JEKELI C, LEE J K, KWON J H. Modeling errors in upward continuation for INS gravity compensation[J]. Journal of Geodesy, 2007, 81(5): 297-309. [8] 赵忠, 王鹏. 高精度惯性导航系统垂线偏差影响与补偿[J]. 中国惯性技术学报, 2013, 21(6): 701-705. ZHAO Zhong, WANG Peng. Analysis and compensation of vertical deflection effect on high accuracy inertial navigation system[J]. Journal of Chinese Inertial Technology, 2013, 21(6): 701-705. [9] ZHOU Xiao, YANG Gongliu, WANG Jing, et al. An improved gravity compensation method for high-precision free-INS based on MEC-BP-AdaBoost[J]. Measurement Science and Technology, 2016, 27(12): 125007. [10] 铁俊波, 吴美平, 蔡劭琨, 等. 基于EGM2008重力场球谐模型的水平重力扰动计算方法[J]. 中国惯性技术学报, 2017, 25(5): 624-629. TIEJunbo, WU Meiping, CAI Shaokun, et al. Gravity disturbance calculation method based on Earth Gravitational Model 2008[J]. Journal of Chinese Inertial Technology, 2017, 25(5): 624-629. [11] TIE Junbo, CAO Juliang, WU Meiping, et al. Compensation of horizontal gravity disturbances for high precision inertial navigation[J]. Sensors, 2018, 18(3): 906. [12] WENG Jun, LIU Jianning, JIAO Mingxing, et al. Analysis and on-line compensation of gravity disturbance in a high-precision inertial navigation system[J]. GPS Solutions, 2020, 24(3): 1-8. [13] LEVINE S A, GELB A. Effect of deflections of the vertical on the performance of a terrestrial inertial navigation system[J]. Journal of Spacecraft and Rockets, 1969, 6(9): 978-984. [14] JORDAN S K. Effects of geodetic uncertainties on a damped inertial navigation system[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(5): 741-752. [15] JEKELI C. Precision free-inertial navigation with gravity compensation by an onboard gradiometer[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 704-713. [16] HELLER W G, JORDAN S K. Error analysis of two new gradiometer-aided inertial navigation systems[J]. Journal of Spacecraft and Rockets, 1976, 13(6): 340-347. [17] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): 1-38. [18] FÖRSTE C, BRUINSMA S, ABRYKOSOV O, et al. EIGEN-6C4-The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse[C]//Proceedings of 2014 EGU General Assembly. Vienna: European Geosciences Union, 2014. [19] GILARDONI M, REGUZZONI M, SAMPIETRO D. GECO: a global gravity model by locally combining GOCE data and EGM2008[J]. Studia Geophysica et Geodaetica, 2016, 60(2): 228-247. [20] 梁伟, 徐新禹, 李建成, 等. 联合EGM2008模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1[J]. 测绘学报, 2018, 47(4): 425-434. DOI: 10.11947/j.AGCS.2018.20170269. LIANG Wei, XU Xinyu, LI Jiancheng, et al. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 425-434. DOI: 10.11947/j.AGCS.2018.20170269. [21] LIANG Wei, LI Jiancheng, XU Xinyu, et al. A high-resolution earth's gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008[J]. Engineering, 2020, 6(8): 860-878. [22] GRUBER T, WILLBERG M. Signal and error assessment of GOCE-based high resolution gravity field models[J]. Journal of Geodetic Science, 2019, 9(1): 71-86. [23] ZINGERLE P, PAIL R, GRUBER T, et al. The combined global gravity field model XGM2019e[J]. Journal of Geodesy, 2020, 94(7): 66. [24] TSCHERNING C, RAPP R. Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models[R]. Columbus: Department of Geodetic Science, Ohio State University, 1974. [25] FORSBERG R. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling[R]. Columbus: Department of Geodetic Science, Ohio State University, 1984. [26] HIRT C, FEATHERSTONE W E, MARTI U. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data[J]. Journal of Geodesy, 2010, 84(9): 557-567. [27] HIRT C. RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone[J]. Marine Geodesy, 2013, 36(2): 183-202. [28] YANG M, HIRT C, TENZER R, et al. Experiences with the use of mass-density maps in residual gravity forward modelling[J]. Studia Geophysica et Geodaetica, 2018, 62(4): 596-623. [29] ZHANG Panpan, BAO Lifeng, GUO Dongmei, et al. Estimation of the height datum geopotential value of Hong Kong using the combined global geopotential models and GNSS/levelling data[J]. Survey Review, 2022, 54(383): 106-116. [30] 李胜全, 欧阳永忠, 常国宾, 等. 惯性导航系统重力扰动矢量补偿技术[J]. 中国惯性技术学报, 2012, 20(4): 410-413. LI Shengquan, OUYANG Yongzhong, CHANG Guobin, et al. Compensation technology of gravity disturbance vector in inertial navigation system[J]. Journal of Chinese Inertial Technology, 2012, 20(4): 410-413. [31] SIMAV M. The use of gravity reductions in the indirect strapdown airborne gravimetry processing[J]. Surveys in Geophysics, 2020, 41(5): 1029-1048. [32] CHANG L, QIN F, WU M. Gravity disturbance compensation for inertial navigation system[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10): 3751-3765. [33] HOFMANN-WELLENHOF B, MORITZ H. Physical geodesy[M]. 2nd ed. Wien: Springer Wien New York, 2006. [34] JEKELI C. Statistical analysis of moving-base gravimetry and gravity gradiometry[R]. Columbus: Ohio State University, 2003. [35] 朱靖. 重力辅助船载激光陀螺姿态测量技术研究[D]. 长沙: 国防科技大学, 2018. ZHU Jing. Study on gravity aided technologies in shipborne attitude measurement with ring lasergyro[D]. Changsha: National University of Defense Technology, 2018. [36] USTUN A, ABBAK R A. On global and regional spectral evaluation of global geopotential models[J]. Journal of Geophysics and Engineering, 2010, 7(4): 369-379. [37] TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864. [38] NAGY D, PAPP G, BENEDEK J. The gravitational potential and its derivatives for the prism[J]. Journal of Geodesy, 2000, 74(7): 552-560. [39] BARTHELMES F. Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the international centre for global earth models (ICGEM)[R]. Potsdam: Deutsches GeoForschungsZentrum GFZ, 2013. [40] JARVIS A, REUTER HI, NELSON A, et al. Hole-filled SRTM for the globe version 4, available from the CGIAR-CSI SRTM 90 m database[DB/OL].[2023-08-07]. https:/srtm.csi.cgiar.org. |