[1] 焦菊英, 王志杰, 魏艳红, 等. 延河流域极端暴雨下侵蚀产沙特征野外观测分析[J]. 农业工程学报, 2017, 33(13): 159-167. JIAO Juying, WANG Zhijie, WEI Yanhong, et al. Characteristics of erosion sediment yield with extreme rainstorms in Yanhe Watershed based on field measurement[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 159-167. [2] 陈俊杰, 孙莉英, 刘俊体, 等. 不同坡长与雨强条件下坡度对细沟侵蚀的影响[J]. 水土保持通报, 2013, 33(2): 1-5. CHEN Junjie, SUN Liying, LIU Junti, et al. Effect of slope gradient on rill erosion under different rainfall intensities and slope lengths[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 1-5. [3] 宋炜, 刘普灵, 杨明义. 利用REE示踪法研究坡面侵蚀过程[J]. 水科学进展, 2004, 15(2): 197-201. SONG Wei, LIU Puling, YANG Mingyi. Study on erosion process by the REE tracer method[J]. Advances in Water Science, 2004, 15(2): 197-201. [4] GOODWIN N R, ARMSTON J, STILLER I, et al. Assessing the repeatability of terrestrial laser scanning for monitoring gully topography: a case study from Aratula, Queensland, Australia[J]. Geomorphology, 2016, 262: 24-36. [5] OKYAY U, TELLING J, GLENNIE C L, et al. Airborne lidar change detection: an overview of Earth sciences applications[J]. Earth-Science Reviews, 2019, 198: 102929. [6] LIU Kai, HU Ding, TANG Guoan, et al. Detection of catchment-scale gully-affected areas using unmanned aerial vehicle (UAV) on the chinese Loess Plateau[J]. ISPRS International Journal of Geo-Information, 2016, 5(12): 238. [7] DAI Wen, QIAN Wei, LIU Aili, et al. Monitoring and modeling sediment transport in space in small loess catchments using UAV-SfM photogrammetry[J]. CATENA, 2022, 214: 106244. [8] WANG Wang, MA Hongchao, ZHANG Zhang, et al. Point cloud classification and accuracy analysis based on feature fusion[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 38-48. [9] 黄先锋, 李卉, 王潇, 等. 机载LiDAR数据滤波方法评述[J]. 测绘学报, 2009, 38(5): 466-469. HUANG Xianfeng, LI Hui, WANG Xiao, et al. Filter algorithms of airborne LiDAR data: review and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5): 466-469. [10] ZHANG Yongjun, XIONG Xiaodong, WANG Mengqiu, et al. A fast aerial image matching method using airborne LiDAR point cloud and POS data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 26-36. [11] DONEV P, WANG Hong, QIN Shuhong, et al. Estimating the forest above-ground biomass based on extracted LiDAR metrics and predicted diameter at breast height[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 13-24. [12] SCHAFFRATH K R, BELMONT P, WHEATON J M. Landscape-scale geomorphic change detection: quantifying spatially variable uncertainty and circumventing legacy data issues[J]. Geomorphology, 2015, 250: 334-348. [13] KIM M K, SOHN H G, KIM S. Incorporating the effect of ALS-derived DEM uncertainty for quantifying changes due to the landslide in 2011, Mt. Umyeon, Seoul[J]. GIScience & Remote Sensing, 2020, 57(3): 287-301. [14] CARABASSA V, MONTERO P, ALCANIZ J M, et al. Soil erosion monitoring in quarry restoration using drones[J]. Minerals, 2021, 11(9): 949. [15] 孙涛, 徐明宇, 董秀军, 等. 机载LiDAR技术应用于茂密植被山区地质灾害调查[J]. 测绘通报, 2021(4): 90-97. SUN Tao, XU Mingyu, DONG Xiujun, et al. Application of airborne LiDAR technology in geological hazard investigation in mountainous area with dense vegetation[J]. Bulletin of Surveying and Mapping, 2021(4): 90-97. [16] ZHAO Guangju, MU Xingmin, JIAO Juying, et al. Evidence and causes of spatiotemporal changes in runoff and sediment yield on the Chinese Loess Plateau[J]. Land Degradation & Development, 2017, 28(2): 579-590. [17] 李淼. 植被变化对南小河沟流域水文要素的影响[D]. 西安: 西安理工大学, 2006. LI Miao. The influence of vegetation change on hydrologic factor in Nanxiaohegou[D]. Xi'an: Xi'an University of Technology, 2006. [18] 郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展[J]. 农业机械学报, 2016, 47(8): 48-59, 116. ZHENG Fenli, XU Ximeng, QIN Chao. A review of gully erosion process research[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 48-59, 116. [19] 郭丽, 梁占训. 黄土高原区水土流失与防治措施探讨[C]//2015年建筑科技与管理学术交流会. 北京:[s.n.],2015: 27-28, 18. GUO Li, LIANG Zhanxun. Prevention and cure measures to the soil and water of Loess Plateau[C]//Proceedings of 2012 Academic Exchange conference on Building Technology and Management. Beijing:[s.n.],2015: 27-28. [20] 胡胜. 黄土高原滑坡空间格局及其对地貌演化的影响[D]. 西安: 西北大学, 2019. HU Sheng. Spatial pattern of landslide in loess plateau and its influence on geomorphologic evolution[D]. Xi'an: Northwest University, 2019. [21] 姚文波, 刘文兆, 侯甬坚. 汶川大地震陇东黄土高原崩塌滑坡的调查分析[J]. 生态学报, 2008, 28(12): 5917-5926. YAO Wenbo, LIU Wenzhao, HOU Yongjian. Investigation and analysis of collapses and landslides on the loess plateau of east Gansu Province after the 5.12 Wenchuan earthquake[J]. Acta Ecologica Sinica, 2008, 28(12): 5917-5926. [22] 曹斌挺, 焦菊英, 王志杰, 等. 2013年延河流域特大暴雨下的滑坡特征[J]. 水土保持研究, 2015, 22(6): 103-109. CAO Binting, JIAO Juying, WANG Zhijie, et al. Characteristics of landslide under the extreme rainstorm in 2013 in the Yanhe Basin[J]. Research of Soil and Water Conservation, 2015, 22(6): 103-109. [23] 杨立中, 王高峰, 王爱军, 等. 陇东黄土丘陵区滑坡形成机理分析: 以环县西北地区为例[J]. 中国地质灾害与防治学报, 2016, 27(2): 39-48. YANG Lizhong, WANG Gaofeng, WANG Aijun, et al. Landslides mechanization in the loess hilly area of eastern Gansu Province—case study in Huan County[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(2): 39-48. [24] 祝俊华, 陈志新, 祝艳波. 延安市滑坡分布规律及发育特征[J]. 地质科技情报, 2017, 36(2): 236-243. ZHU Junhua, CHEN Zhixin, ZHU Yanbo. Distribution regularity and development characteristics of landslides in Yan'an[J]. Geological Science and Technology Information, 2017, 36(2): 236-243. [25] 滕宏泉, 范立民, 向茂西, 等. 黄土沟壑区地质灾害发生的降雨临界值分析: 延安市2013年7月份强降雨诱发大面积地质灾害为例[C]//陕西省地质环境监测总站2013年度学术研讨会. 西安:[s.n.],2013: 9-18. TENG Hongquan, FAN Limin, XIANG Maoxi, et al. Analysis of rainfall critical value of geological disasters in loess gully region:a case study of large scale geological disasters for heavy rainfall in Yan'an city in july 2013[C]//Proceedings of 2013 Academic Seminar of Shaanxi Geological Environment Monitoring Station, Xi'an Shaanxi Province. Xi'an:[s.n.],2013: 9-18. [26] ZHUANG Jianqi, PENG Jianbing. A coupled slope cutting—a prolonged rainfall-induced loess landslide: a 17 October 2011 case study[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(4): 997-1011. [27] GUO Wenzhao, CHEN Zhuoxin, WANG Wenlong, et al. Telling a different story: the promote role of vegetation in the initiation of shallow landslides during rainfall on the Chinese Loess Plateau[J]. Geomorphology, 2020, 350: 106879. [28] 韩勇, 郑粉莉, 徐锡蒙, 等. 子午岭林区浅层滑坡侵蚀与植被的关系: 以富县“7·21”特大暴雨为例[J]. 生态学报, 2016, 36(15): 4635-4643. HAN Yong, ZHENG Fenli, XU Ximeng, et al. Relationship between shallow landslide erosion and vegetation in the Ziwuling forest area: a case study of the “7·21” disaster in Fuxian County[J]. Acta Ecologica Sinica, 2016, 36(15): 4635-4643. [29] 黄玉华, 冯卫, 李政国. 陕北延安地区2013年“7.3”暴雨特征及地质灾害成灾模式浅析[J]. 灾害学, 2014, 29(2): 54-59. HUANG Yuhua, FENG Wei, LI Zhengguo. Characteristics and geological disaster mode of the rainstorm happened on July 3.2013 in Yanan area of Shaanxi Province[J]. Journal of Catastrophology, 2014, 29(2): 54-59. [30] 白先发, 高建恩, 贾立志, 等. 极端暴雨条件下黄土区典型梯田防蚀效果研究[J]. 水土保持研究, 2015, 22(3): 10-15. BAI Xianfa, GAO Jianen, JIA Lizhi, et al. Preliminary study of effects of different terraces on erosion control in Loess Pleteau[J]. Research of Soil and Water Conservation, 2015, 22(3): 10-15. [31] 王雷, 龙永清, 徐佳, 等. 黄土侵蚀沟稳定性监测与初步分析[J]. 地理与地理信息科学, 2017, 33(4): 119-122. WANG Lei, LONG Yongqing, XU Jia, et al. The monitoring and preliminary analysis of the stability of erosion gullies in Loess Plateau[J]. Geography and Geo-Information Science, 2017, 33(4): 119-122. [32] GUAN Yabing, YANG Shengtian, ZHAO Changsen, et al. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau[J]. Soil and Tillage Research, 2021, 205: 104800. [33] TANG Bingzhe, JIAO Juying, ZHANG Yifeng, et al. The magnitude of soil erosion on hillslopes with different land use patterns under an extreme rainstorm on the Northern Loess Plateau, China[J]. Soil and Tillage Research, 2020, 204: 104716. [34] 郭晋伟, 何亮, 裴志林, 等. 极端暴雨条件下黄土高原水平梯田损毁情况调查分析: 以岔巴沟流域“7·26”特大暴雨为例[J]. 水土保持研究, 2019, 26(6): 107-113. GUO Jinwei, HE Liang, PEI Zhilin, et al. Investigation and analysis of damage of horizontal terraced fields under extreme rainstorm conditions in the Loess Plateau—taking the 7·26 torrential rain in the Chabagou watershed as an example[J]. Research of Soil and Water Conservation, 2019, 26(6): 107-113. [35] 王楠, 陈一先, 白雷超, 等. 陕北子洲县“7·26”特大暴雨引发的小流域土壤侵蚀调查[J]. 水土保持通报, 2017, 37(4): 338-344, 347. WANG Nan, CHEN Yixian, BAI Leichao, et al. Investigation on soil erosion in small watersheds under “7·26” extreme rainstorm in Zizhou County, northern Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2017, 37(4): 338-344, 347. [36] YANG Bo, WANG Wenlong, GUO Mingming, et al. Soil erosion of unpaved loess roads subjected to an extreme rainstorm event: a case study of the Jiuyuangou watershed on the Loess Plateau, China[J]. Journal of Mountain Science, 2019, 16(6): 1396-1407. [37] 冯兰茜, 王文龙, 郭明明, 等. 根系密度对黄土塬沟头溯源侵蚀产沙和形态演化过程的影响[J]. 农业工程学报, 2020, 36(6): 88-96. FENG Lanqian, WANG Wenlong, GUO Mingming, et al. Effects of root density on gully headcut erosion and morphological evolution process in gully regions of Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 88-96. [38] 康宏亮, 王文龙, 薛智德, 等. 冲刷条件下黄土丘陵区浅沟侵蚀形态及产流产沙特征[J]. 农业工程学报, 2016, 32(20): 161-170. KANG Hongliang, WANG Wenlong, XUE Zhide, et al. Erosion morphology and runoff generation and sediment yield on ephemeral gully in loess hilly region in field scouring experiment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 161-170. [39] 郑粉莉, 康绍忠. 黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J]. 地理学报, 1998, 53(5): 422-428. ZHENG Fenli, KANG Shaozhong. Relationship and mechanism of erosion and sediment yield in different erosion zones on loess slope[J]. Acta Geographica Sinica, 1998, 53(5): 422-428. [40] 徐锡蒙, 郑粉莉, 覃超, 等. 黄土丘陵沟壑区浅沟发育动态监测与形态定量研究[J]. 农业机械学报, 2019, 50(4): 274-282. XU Ximeng, ZHENG Fenli, QIN Chao, et al. Dynamic monitoring of ephemeral gully development and its morphology quantification in loess hilly-gully region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 274-282. [41] 杨波, 王文龙, 张闯娟, 等. “7·26”暴雨下不同土地利用坡面浅沟沟槽发育特征及体积估算[J]. 农业工程学报, 2019, 35(9): 121-128. YANG Bo, WANG Wenlong, ZHANG Chuangjuan, et al. Development characteristics and volume estimation of ephemeral gully groove for different land use slopes undergoing “7·26” torrential rain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 121-128. [42] 侯建才. 黄土丘陵沟壑区小流域侵蚀产沙特征示踪研究[D]. 西安: 西安理工大学, 2007. HOU Jiancai. Study on the characteristics of soil erosion, sediment yield in small watershed in Loess Plateau hilly, gully area by using tracers[D]. Xi'an: Xi'an University of Technology, 2007. [43] 丁晋利, 郑粉莉, 张信宝, 等. 利用7Be研究侵蚀性降雨前后坡面土壤侵蚀空间分布特征[J]. 水土保持通报, 2005, 25(2): 16-19. DING Jinli, ZHENG Fenli, ZHANG Xinbao, et al. Application of 7Be to study spatial distributed characteristics of soil erosion on hillslopes before and after erosive rainfall occurrence[J]. Bulletin of Soil and Water Conservation, 2005, 25(2): 16-19. [44] GUO Wenzhao, BAI Yun, CUI Zhiqiang, et al. The impact of concentrated flow and slope on unpaved loess-road erosion on the Chinese Loess Plateau[J]. Land Degradation & Development, 2021, 32(2): 914-925. [45] ZHANG Yan, ZHAO Yiyang, LIU Baoyuan, et al.Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China's Loess Plateau[J]. Agriculture, Ecosystems & Environment, 2019, 284: 106580. [46] WANG Zhijie, JIAO Juying, RAYBURG S, et al. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China[J]. CATENA, 2016, 141: 109-116. [47] GUO Mingming, BAI Yun, CUI Zhiqiang, et al. Distribution, morphology and influencing factors of rills under extreme rainfall conditions in main land uses on the Loess Plateau of China[J]. Geomorphology, 2019, 345: 106847. [48] EVANS J S, HUDAK A T. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 1029-1038. [49] 李豆, 李朋飞, 穆兴民, 等. 机载LiDAR测量复杂地形中滤波算法的比较研究[J]. 水土保持研究, 2021, 28(4): 171-178. LI Dou, LI Pengfei, MU Xingmin, et al. Accuracy of airborne LiDAR point cloud filtering for areas with complex terrain[J]. Research of Soil and Water Conservation, 2021, 28(4): 171-178. [50] MILAN D J, HERITAGE G L, LARGE A R G, et al. Filtering spatial error from DEMs: implications for morphological change estimation[J]. Geomorphology, 2011, 125(1): 160-171. [51] HERITAGE G L, MILAN D J, LARGE A R G, et al. Influence of survey strategy and interpolation model on DEM quality[J]. Geomorphology, 2009, 112(3/4): 334-344. [52] 李朋飞, 张晓晨, 严露, 等. 复杂地形中机载LiDAR点云构建DEM的插值算法对比[J]. 农业工程学报, 2021, 37(15): 146-153. LI Pengfei, ZHANG Xiaochen, YAN Lu, et al. Comparison of interpolation algorithms for DEMs in topographically complex areas using airborne LiDAR point clouds[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 146-153. [53] KINZEL P J, WRIGHT C W, NELSON J M, et al. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river[J]. Journal of Hydraulic Engineering, 2007, 133(7): 838-842. [54] YANG Xin, LI Min, NA Jiaming, et al. Gully boundary extraction based on multidirectional hill-shading from high-resolution DEMs[J]. Transactions in GIS, 2017, 21(6): 1204-1216. [55] BANGEN S, HENSLEIGH J, MCHUGH P, et al. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems[J]. Water Resources Research, 2016, 52(2): 1176-1193. [56] AGUILAR F J, AGVERA F, AGUILAR M A, et al. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(7): 805-816. [57] GUO Qinghua, LI Wenkai, YU Hong, et al. Effects of topographic variability and LiDAR sampling density on several DEM interpolation methods[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(6): 701-712. [58] BURNS W J, COE J A, KAYA B S, et al. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon[J]. Environmental and Engineering Geoscience, 2010, 16(4): 315-341. [59] BULL J M, MILLER H, GRAVLEY D M, et al. Assessing debris flows using LiDAR differencing: 18 May 2005 Matata event, New Zealand[J]. Geomorphology, 2010, 124(1/2): 75-84. [60] DELONG S B, PRENTICE C S, HILLEY G E, et al. Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow[J]. Earth Surface Processes and Landforms, 2012, 37(3): 262-272. [61] MCCULLAGH M J. Terrain and surface modelling systems: theory and practice[J]. The Photogrammetric Record, 2006, 12(72): 747-779. [62] 郭明明, 王文龙, 李建明, 等. 黄土区坡耕地耕作对浅沟径流产沙及其形态发育特征的影响[J]. 农业工程学报, 2015, 31(15): 114-123. GUO Mingming, WANG Wenlong, LI Jianming, et al. Effect of tillage on runoff and sediment yields and morphology development characteristic of ephemeral gully in loessial region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 114-123. [63] 王逸男, 孔祥兵, 赵春敬, 等. 2000—2020年黄土高原植被覆盖度时空格局变化分析[J]. 水土保持学报, 2022, 36(3): 130-137. WANG Yinan, KONG Xiangbing, ZHAO Chunjing, et al. Change of vegetation coverage in the Loess Plateau from 2000 to 2020 and its spatiotemporal pattern analysis[J]. Journal of Soil and Water Conservation, 2022, 36(3): 130-137. |