[1] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10): 1645-1664. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1645-1664. [2] TÖPFER F, PILLEWIZER W. The principles of selection[J]. The Cartographic Journal, 1966, 3(1): 10-16. [3] 杨敏. 顾及上下文特征的地图综合选取方法与应用研究[J]. 测绘学报, 2014, 43(8): 877. YANG Min. Research on feature selection considering spatial context in map generalization and itsapplication[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 877. [4] SADAHIRO Y. Cluster perception in the distribution of point objects[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1997, 34(1): 49-62. [5] REGNAULD N. Contextual building typification in automated map generalization[J]. Algorithmica, 2001, 30(2): 312-333. [6] BURGHARDT D, CECCONI A. Mesh simplification for building typification[J]. International Journal of Geographical Information Science, 2007, 21(3): 283-298. [7] 艾廷华, 刘耀林. 保持空间分布特征的群点化简方法[J]. 测绘学报, 2002, 31(2): 175-181. AI Tinghua, LIU Yaolin. A method of point cluster simplification with spatial distribution properties preserved[J]. Acta Geodaetica et Cartographic Sinica, 2002, 31(2): 175-181. [8] 闫浩文, 王家耀. 基于Voronoi图的点群目标普适综合算法[J]. 中国图象图形学报, 2005, 10(5): 633-636. YAN Haowen, WANG Jiayao. A generic algorithm for point cluster generalization based on Voronoi diagrams[J]. Journal of Image and Graphics, 2005, 10(5): 633-636. [9] 杨敏, 艾廷华, 卢威, 等. 自发地理信息兴趣点数据在线综合与多尺度可视化方法[J]. 测绘学报, 2015, 44(2): 228-234. DOI: 10.11947/j.AGCS.2015.20130564. YANG Min, AI Tinghua, LU Wei, et al. A real-time generalization and multi-scale visualization method for POI data in volunteered geographic information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2): 228-234. DOI: 10.11947/j.AGCS.2015.20130564. [10] GONG Xianyong, WU Fang. A typification method for linear pattern in urban building generalisation[J]. Geocarto International, 2018, 33(2): 189-207. [11] WANG X, BURGHARDT D. A typification method for linear building groups based on stroke simplification[J]. Geocarto International, 2021, 36(15): 1732-1751. [12] WANG X, BURGHARDT D. A mesh-based typification method for building groups with grid patterns[J]. ISPRS International Journal of Geo-Information, 2019, 8(4): 168. [13] 蔡永香, 郭庆胜. 基于Kohonen网络的点群综合研究[J]. 武汉大学学报(信息科学版), 2007, 32(7): 626-629. CAI Yongxiang, GUO Qingsheng.Points group generalization based on Konhonen net[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 626-629. [14] SESTER M. Optimization approaches for generalization and data abstraction[J]. International Journal of Geographical Information Science, 2005, 19(8/9): 871-897. [15] 邓红艳, 武芳, 钱海忠, 等. 基于遗传算法的点群目标选取模型[J]. 中国图象图形学报, 2003, 8(8): 970-976. DENG Hongyan, WU Fang, QIAN Haizhong, et al. A model of point cluster selection based on genetical gorithms[J]. Journal of Image and Graphics, 2003, 8(8): 970-976. [16] WANG Lin, GUO Qingsheng, LIU Yuangang, et al. Contextual building selection based on a genetic algorithm in map generalization[J]. ISPRS International Journal of Geo-Information, 2017, 6(9): 271. [17] YAN Xiongfeng, CHEN Huan, HUANG Haoran, et al. Building typification in map generalization using affinity propagation clustering[J]. ISPRS International Journal of Geo-Information, 2021, 10(11): 732. [18] 吕峥, 孙群, 马京振, 等. 复杂网络视角下的居民地选取方法[J]. 测绘学报, 2023, 52(5): 852-862. DOI: 10.11947/j.AGCS.2023.20220267. LV Zheng, SUN Qun, MA Jingzhen, et al. Residential area selection method from the perspective of complex network[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 852-862. DOI: 10.11947/j.AGCS.2023.20220267. [19] SHEN Yilang, AI Tinghua, ZHAO Rong. Raster-based method for building selection in the multi-scale representation of two-dimensional maps[J]. Geocarto International, 2022, 37(22): 6494-6518. [20] 程涛, 张洋, James Haworth. 基于网络和图的时空智能: 概念、方法和应用[J]. 测绘学报, 2022, 51(7): 1629-1639. DOI: 10.11947/j.AGCS.2022.20220236. CHENG Tao, ZHANG Yang, HAWORTH J. Network and graph-based SpaceTimeAI: conception, method and applications[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. DOI: 10.11947/j.AGCS.2022.20220236. [21] YANG Min, JIANG Chenjun, YAN Xiongfeng, et al. Detecting interchanges in road networks using a graph convolutional network approach[J]. International Journal of Geographical Information Science, 2022, 36(6): 1119-1139. [22] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 259-273. [23] YANG Min, KONG Bo, DANG Ruirong, et al. Classifying urban functional regions by integrating buildings and points-of-interest using a stacking ensemble method[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102753. [24] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3): 490-512. [25] 于洋洋, 贺康杰, 武芳, 等. 面状居民地形状分类的图卷积神经网络方法[J]. 测绘学报, 2022, 51(11): 2390-2402. DOI: 10.11947/j.AGCS.2022.20210134. YU Yangyang, HE Kangjie, WU Fang, et al. Graph convolution neural network method for shape classification of areal settlements[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2390-2402. DOI: 10.11947/j.AGCS.2022.20210134. [26] 晏雄锋, 袁拓, 杨敏, 等. 建筑物形状特征分析表达与自适应化简方法[J]. 测绘学报, 2022, 51(2): 269-278. DOI: 10.11947/j.AGCS.2022.20210317. YAN Xiongfeng, YUAN Tuo, YANG Min, et al. An adaptive building simplification approach based on shape analysis and representation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 269-278. DOI: 10.11947/j.AGCS.2022.20210317. [27] DUCHÊNE C, BARD S, BARILLOT X, et al. Quantitative and qualitative description of building orientation [C]//Proceedings of the 7th ICA Workshop on Progress in Automated Map Generalisation. Paris: International Cartographic Association Commission on Map Generalization, 2003. [28] BASARANER M, CETINKAYA S. Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS[J]. International Journal of Geographical Information Science, 2017, 31(10): 1952-1977. [29] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of 2017 International Conference on Learning Representations. Toulon: [s.n.], 2017. [30] YANG Min, YUAN Tuo, YAN Xiongfeng, et al. A hybrid approach to building simplification with an evaluator from a backpropagation neural network[J]. International Journal of Geographical Information Science, 2022, 36(2): 280-309. |