测绘学报 ›› 2023, Vol. 52 ›› Issue (11): 1844-1857.doi: 10.11947/j.AGCS.2023.20220609

• 大地测量学与导航 • 上一篇    下一篇

局域重力场球冠谐建模与联邦滤波相结合的重力匹配导航算法

黄炎1,2, 李姗姗2, 李新星2, 宋星光3, 范雕2, 万宏发2   

  1. 1. 军事科学院国防科技创新研究院, 北京 100071;
    2. 信息工程大学地理空间信息学院, 河南 郑州 450001;
    3. 北京航天飞行控制中心, 北京 100094
  • 收稿日期:2022-10-25 修回日期:2023-09-19 发布日期:2023-12-15
  • 通讯作者: 李姗姗 E-mail:zzy_lily@sina.com
  • 作者简介:黄炎(1994-),男,助理研究员,主要从事水下重力导航与计算机技术研究。E-mail:781367531@qq.com
  • 基金资助:
    国家自然科学基金(42174007;42174013)

Underwater gravity FKF matching enhancement algorithm based on local SCHA modeling

HUANG Yan1,2, LI Shanshan2, LI Xinxing2, SONG Xingguang3, FAN Diao2, WAN Hongfa2   

  1. 1. National Innovation Institute of Defense Technology, Academy of Military Science, Beijing 100071, China;
    2. Information Engineering University, Zhengzhou 450001, China;
    3. Beijing Aerospace Control Center, Beijing 100094, China
  • Received:2022-10-25 Revised:2023-09-19 Published:2023-12-15
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42174007;42174013)

摘要: 本文提出一种基于联邦Kalman滤波器(federated Kalman filter,FKF)和局部重力场球冠谐分析(spherical cap harmonic analysis,SCHA)建模的水下重力匹配导航方法。首先基于适定边值问题构建FKF子系统滤波器的重力梯度复数组合观测量;然后采用改进球谐分析技术(adjusted spherical harmonic analysis,ASHA)优化局部重力场球冠谐建模方法,快速建立以匹配点为中心的局部海洋重力场与空间位置之间较为准确的移动窗口球冠谐模型,并依据该模型组建子滤波器量测方程;最后利用预测残差向量设计自适应信息分配因子将各子滤波器状态估值及协方差进行融合得到惯导位置误差最优估计量。试验结果表明:采用SCHA建模的重力FKF匹配算法24 h航行导航定位误差保持在1.1 n mile以内,导航定位精度提高85%以上;10 d长时间航行导航定位精度提高了88.7%。本文算法能够在一定程度上克服惯性导航系统由于时间推移误差积累的缺陷,提高系统导航定位精度,增加匹配算法的稳健性。

关键词: FKF, SCHA, 重力梯度, 复数组合, 匹配导航, ASHA

Abstract: An underwater gravity matching navigation method based on federal Kalman filter (FKF) and spherical cap harmonic analysis (SCHA) modeling of local gravity field is proposed. Firstly, based on the well posed boundary value problem, the gravity gradient complex combination observation of FKF subsystem filter is constructed. Then, adjusted spherical harmonic analysis (ASHA) is used to optimize the spherical crown harmonic modeling method of local gravity field, so as to quickly establish a more accurate moving window spherical crown harmonic model between the local ocean gravity field centered on the matching point and the spatial position. Based on this model, the measurement equation of sub-filter is established. Finally, the prediction residual vector is used to design an adaptive information distribution factor to fuse the state estimation and covariance of each sub-filter to obtain the optimal estimator of inertial navigation position error. The experimental results show that the gravity FKF matching algorithm modeled by SCHA keeps the positioning error of 24-hour navigation within 1.1 n miles, and the navigation positioning accuracy is improved by more than 85%; The positioning accuracy of 10 day long navigation has been improved by 88.7%. The algorithm can overcome the defect of the inertial navigation system due to the accumulation of time error to some extent, improve the navigation and positioning accuracy of the system, and increase the robustness of the matching algorithm.

Key words: FKF, SCHA, gravity gradient, complex combination, match navigation, ASHA

中图分类号: