[1] WANG Wei, QIAO Xuejun, WANG Dijin, et al. Spatiotemporal noise in GPS position time-series from Crustal Movement Observation Network of China[J]. Geophysical Journal International, 2019, 216(3): 1560-1577. [2] WU Shuguang, NIE Guigen, MENG Xiaolin, et al. Application of an annual phase-augmented clustering approach to annual detection of vertical GPS station deformation[J]. GPS Solutions, 2020, 25(1): 1-13. [3] YAO Chaolong, LUO Zhicai, HU Yueming, et al. Detecting droughts in southwest China from GPS vertical position displacements[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 114. [4] VAN DAM T, ALTAMIMI Z, COLLILIEUX X, et al. Topographically induced height errors in predicted atmospheric loading effects[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7): B07415. [5] JIANG Weiping, LI Zhao, VAN DAM T, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7): 687-703. [6] CHANARD K, FLEITOUT L, CALAIS E, et al. Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 3225-3237. [7] YAN Haoming, CHEN Wu, ZHU Yaozhong, et al. Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes[J]. Geophysical Research Letters, 2009, 36(13):L13301. [8] XU Xueqing, DONG Danan, FANG Ming, et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position[J]. GPS Solutions, 2017, 21(3): 1265-1274. [9] KING M A, WILLIAMS S D P. Apparent stability of GPS monumentation from short-baseline time series[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B10):B10403. [10] HILL E M, DAVIS J L, ELÓSEGUI P, et al. Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): B11402. [11] NAHMANI S, BOCK O, BOUIN M N, et al. Hydrological deformation induced by the West African Monsoon: comparison of GPS, GRACE and loading models[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B5): B05409. [12] YANG Kun, QIN Jun, ZHAO Long, et al. A multiscale soil moisture and freeze-thaw monitoring network on the third pole[J]. Bulletin of the American Meteorological Society, 2013, 94(12): 1907-1916. [13] 姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123. JIANG Weiping, WANG Kaihua, LI Zhao, et al. Prospect and theory of GNSS coordinate time series analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123. [14] 王敏, 沈正康. 中国大陆现今构造变形: 三十年的GPS观测与研究[J]. 中国地震, 2020, 36(4): 660-683. WANG Min, SHEN Zhengkang. Present-day tectonic deformation in continental China: thirty years of GPS observation and research[J]. Earthquake Research in China, 2020, 36(4): 660-683. [15] 姜卫平, 李昭, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列非线性变化的成因分析[J]. 地球物理学报, 2013, 56(7): 2228-2237. JIANG Weiping, LI Zhao, LIU Hongfei, et al. Cause analysis of the non-linear variation of the IGS reference station coordinate time series inside China[J]. Chinese Journal of Geophysics, 2013, 56(7): 2228-2237. [16] BEVIS M, BROWN A. Trajectory models and reference frames for crustal motion geodesy[J]. Journal of Geodesy, 2014, 88(3): 283-311. [17] 张恒璟, 程鹏飞. 基于经验模式分解的CORS站高程时间序列分析[J]. 大地测量与地球动力学, 2012, 32(3): 129-134. ZHANG Hengjing, CHENG Pengfei. Analysis on time series of two cors stations' height based on EMD[J]. Journal of Geodesy and Geodynamics, 2012, 32(3): 129-134. [18] 张恒璟, 程鹏飞. 基于EEMD的GPS高程时间序列噪声识别与提取[J]. 大地测量与地球动力学, 2014, 34(2): 79-83. ZHANG Hengjing, CHENG Pengfei. Noise recognition and extraction of GPS height time series based on EMD[J]. Journal of Geodesy and Geodynamics, 2014, 34(2): 79-83. [19] 贾瑞生, 赵同彬, 孙红梅, 等. 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58(3): 1013-1023. JIA Ruisheng, ZHAO Tongbin, SUN Hongmei, et al. Micro-seismic signal denoising method based on empirical mode decomposition and independent component analysis[J]. Chinese Journal of Geophysics, 2015, 58(3): 1013-1023. [20] 戴前伟, 丁浩, 张华, 等. 基于变分模态分解和奇异谱分析的GPR信号去噪[J]. 吉林大学学报(地球科学版), 2022, 52(3): 701-712. DAI Qianwei, DING Hao, ZHANG Hua, et al. Noise reduction method of GPR signal based on VMD-SSA[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(3): 701-712. [21] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of 1998 Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, London:the Royal Society Publishing,1998, 454(1971): 903-995. [22] 穆大鹏, 闫昊明. 全球平均海平面上升的瞬时速率[J]. 地球物理学报, 2018, 61(12): 4758-4766. MU Dapeng, YAN Haoming. The instantaneous rate of global mean sea level rise[J]. Chinese Journal of Geophysics, 2018, 61(12): 4758-4766. [23] 张双成, 李振宇, 何月帆, 等. GNSS高程时间序列周期项的经验模态分解提取[J]. 测绘科学, 2018, 43(8): 80-84, 96. ZHANG Shuangcheng, LI Zhenyu, HE Yuefan, et al. Extracting of periodic component of GNSS vertical time series using EMD[J]. Science of Surveying and Mapping, 2018, 43(8): 80-84, 96. [24] 刘希康, 丁志峰, 李媛, 等. EMD在GNSS时间序列周期项处理中的应用[J]. 武汉大学学报(信息科学版), 2023, 48(1): 135-145. LIU Xikang, DING Zhifeng, LI Yuan, et al. Application of EMD to GNSS time series periodic term processing[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 135-145. [25] 鲁铁定, 钱文龙, 贺小星, 等. 一种削弱信噪混叠的EMD降噪方法[J]. 大地测量与地球动力学, 2020, 40(2): 111-116. LU Tieding, QIAN Wenlong, HE Xiaoxing, et al. An EMD noise reduction method for reducing signal noise aliasing[J]. Journal of Geodesy and Geodynamics, 2020, 40(2): 111-116. [26] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. [27] 刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365. LIU Changliang, WU Yingjie, ZHEN Chenggang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365. [28] 吕中亮. 基于变分模态分解与优化多核支持向量机的旋转机械早期故障诊断方法研究[D]. 重庆: 重庆大学, 2016. LÜ Zhongliang. Research on incipient fault diagnosis methods for rotating machinery based on VMD and optimized MSVM[D]. Chongqing: Chongqing University, 2016. [29] 丁承君, 冯玉伯, 王曼娜. 基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2021, 40(2): 287-296. DING Chengjun, FENG Yubo, WANG Manna. Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(2): 287-296. [30] 王煜尘, 窦银科, 孟润泉. 基于模糊C均值聚类-变分模态分解和群智能优化的多核神经网络短期负荷预测模型[J]. 高电压技术, 2022, 48(4): 1308-1319. WANG Yuchen, DOU Yinke, MENG Runquan. Forecasting model for multicore neural network short-term load based on fuzzy C-mean clustering-variational modal decomposition and chaotic swarm intelligence optimization[J]. High Voltage Engineering, 2022, 48(4): 1308-1319. [31] 叶剑华, 曹旌, 杨理, 等. 基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J]. 电网技术, 2022, 46(7): 2610-2622. YE Jianhua, CAO Jing, YANG Li, et al. Ultra short-term load forecasting of user level integrated energy system based on variational mode decomposition and multi-model fusion[J]. Power System Technology, 2022, 46(7): 2610-2622. [32] 陆振宇, 卢亚敏, 夏志巍, 等. 基于变分模态分解和小波分析的语音信号去噪方法[J]. 现代电子技术, 2018, 41(13): 47-51. LU Zhenyu, LU Yamin, XIA Zhiwei, et al. Speech signal denoising method based on VMD and wavelet analysis[J]. Modern Electronics Technique, 2018, 41(13): 47-51. [33] 李宏, 李定文, 朱海琦, 等. 一种优化的VMD算法及其在语音信号去噪中的应用[J]. 吉林大学学报(理学版), 2021, 59(5): 1219-1227. LI Hong, LI Dingwen, ZHU Haiqi, et al. An optimized VMD algorithm and its application in speech signal denoising[J]. Journal of Jilin University (Science Edition), 2021, 59(5): 1219-1227. [34] 陈祥, 杨志强, 田镇, 等. GA-VMD与多尺度排列熵结合的GNSS坐标时序降噪方法[J]. 武汉大学学报(信息科学版), 2023, 48(9): 1425-1434. CHEN Xiang, YANG Zhiqiang, TIAN Zhen, et al. Denoising method for GNSS time series based on GA-VMD and multi-scale permutation entropy[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1425-1434. [35] MAJUMDER I, DASH P K, BISOI R. Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting[J]. Energy Conversion and Management, 2018, 171: 787-806. [36] 朱建军, 章浙涛, 匡翠林, 等. 一种可靠的小波去噪质量评价指标[J]. 武汉大学学报(信息科学版), 2015, 40(5): 688-694. ZHU Jianjun, ZHANG Zhetao, KUANG Cuilin, et al. A reliable evaluation indicator of wavelet denoising[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 688-694. [37] 杨兵, 杨志强, 田镇, 等. 联合EMD-HD和小波分解的GNSS坐标时间序列降噪分析[J]. 测绘学报, 2022, 51(9): 1881-1889. DOI: 10.11947/j.AGCS.2022.20210175. YANG Bing, YANG Zhiqiang, TIAN Zhen, et al. Denoising analysis of GNSS coordinate time series by combining EMD-HD and wavelet decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1881-1889. DOI: 10.11947/j.AGCS.2022.20210175. [38] HERRING R, KING W, MCCLUSKY S. GAMIT/GLOBK reference manuals, release 10.4[R].Cambridge: MIT Technical Reports,2010. [39] REBISCHUNG P, GRIFFITHS J, RAY J, et al. IGS08: the IGS realization of ITRF2008[J]. GPS Solutions, 2012, 16(4): 483-494. [40] GAZEAUX J, WILLIAMS S, KING M, et al. Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2397-2407. [41] FENG W, ZHONG M, LEMOINE J, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements[J]. Water Resources Research, 2013, 49: 2110-2118. [42] HUANG Zhiyong, PAN Yun, GONG Huili, et al. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain[J]. Geophysical Research Letters, 2015, 42(6): 1791-1799. [43] GONG Huili, PAN Yun, ZHENG Longqun, et al. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971—2015)[J]. Hydrogeology Journal, 2018, 26(5): 1417-1427. |