[1] 李德仁, 徐小迪, 邵振峰. 论万物互联时代的地球空间信息学[J]. 测绘学报, 2022, 51(1): 1-8. DOI:10.11947/j.AGCS.2022.2021056. LI Deren, XU Xiaodi, SHAO Zhenfeng. On geospatial information science in the era of IoE[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 1-8. DOI:10.11947/j.AGCS.2022.2021056. [2] 刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4): 403-414. DOI: 10.11947/j.AGCS.2020.20190539. LIU Jingnan, GUO Wenfei, GUO Chi, et al. Rethinking ubiquitous mapping in the intelligent age[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 403-414. DOI: 10.11947/j.AGCS.2020.20190539. [3] 柳景斌, 赵智博, 胡宁松, 等. 室内高精度定位技术总结与展望[J]. 武汉大学学报(信息科学版), 2022, 47(7): 997-1008. LIU Jingbin, ZHAO Zhibo, HU Ningsong, et al. Summary and prospect of indoor high-precision positioning technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 997-1008. [4] KUNHOTH J, KARKAR A, AL-MAADEED S, et al. Indoor positioning and wayfinding systems: a survey[J].Human-Centric Computing and Information Sciences, 2020, 10(1): 31-41. [5] 薛卫星. RSSI在室内定位中的测量特性及应用研究[J]. 测绘学报, 2022, 51(12): 2558. DOI:10.11947/j.AGCS.2022.20210114. XUE Weixing. Research on measurement properties and application of RSSI for indoor localization[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12): 2558. DOI:10.11947/j.AGCS.2022.20210114. [6] GENG Jijun, XIA Linyuan, XIA Jingchao, et al. Smartphone-based pedestrian dead reckoning for 3D indoor positioning[J]. Sensors, 2021, 21(24): 8180. [7] 陈锐志,陈亮.基于智能手机的室内定位技术的发展现状和挑战[J].测绘学报,2017,46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones: the sate-of-art and the challenges [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:10.11947/j.AGCS.2017.20170383. [8] CHEN Jian, SONG Shaojing, GU Yang, et al. A multisensor fusion algorithm of indoor localization using derivative Euclidean distance and the weighted extended Kalman filter[J]. Sensor Review, 2022, 42(6): 669-681. [9] LIU Mengyun, CHEN Ruizhi, LI Deren, et al. Scene recognition for indoor localization using a multi-sensor fusion approach[J]. Sensors, 2017, 17(12): 2847. [10] EBRAHIMI A, CZARNUCH S. Automatic super-surface removal in complex 3D indoor environments using iterative region-based RANSAC[J]. Sensors, 2021, 21(11): 3724. [11] 李清泉, 周宝定, 马威, 等. GIS辅助的室内定位技术研究进展[J]. 测绘学报, 2019, 48(12): 1498-1506. DOI:10.11947/j.AGCS.2019.20190455. LI Qingquan, ZHOU Baoding, MA Wei, et al. Research process of GIS-aided indoor localization[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1498-1506. DOI:10.11947/j.AGCS.2019.20190455. [12] 余亚东, 李春江, 杨丽. 基于语音识别的智能家居物联网系统[J]. 计算机应用, 2022, 42(S1):391-394. YU Yadong, LI Chunjiang, YANG Li. Intelligent home Internet of Things system based on speech recognition[J]. Journal of Computer Applications, 2022, 42(S1):391-394. [13] 张毅, 邬阳, 高勇, 等. 基于空间陈述的定位及不确定性研究[J]. 地球信息科学学报, 2013, 15(1):38-45. ZHANG Yi, WU Yang, GAO Yong, et al. On the description-based spatial positioning and the associated uncertainty[J]. Journal of Geo-Information Science, 2013, 15(1):38-45. [14] CHEN Hao, VASARDANI M, WINTER S, et al. A graph database model for knowledge extracted from place descriptions[J]. ISPRS International Journal of Geo-Information, 2018, 7(6): 221. [15] LIU Y, GUO Q H, WIECZOREK J, et al. Positioning localities based on spatial assertions[J]. International Journal of Geographical Information Science, 2009, 23(11): 1471-1501. [16] RICHTER D, WINTER S, RICHTER K F, et al. Granularity of locations referred to by place descriptions [J]. Computers, Environment and Urban Systems, 2013, 41: 88-99. [17] RICHTER K F, WINTER S, SANTOSA S. Hierarchical representations of indoor spaces[J]. Environment and Planning B: Planning and Design, 2011, 38(6): 1052-1070. [18] 孙伟, 欧阳继红, 马亭新, 等. 不确定区域间方向关系的相似性度量方法[J]. 电子学报, 2014, 42(3): 597-601. SUN Wei, OUYANG Jihong, MA Tingxin, et al. Similarity assessment of approximate direction relations[J]. Acta Electronica Sinica, 2014, 42(3): 597-601. [19] GUO Q, LIU Y, WIECZOREK J. Georeferencing locality descriptions and computing associated uncertainty using a probabilistic approach[J]. International Journal of Geographical Information Science, 2008, 22(10): 1067-1090. [20] WANG Yankun, FAN Hong, CHEN Ruizhi. Indoors locality positioning using cognitive distances and directions[J]. Sensors, 2017, 17(12): 2828. [21] GONG Y, LI G, TIAN Y, et al. A vector-based algorithm to generate and update multiplicatively weighted Voronoi diagrams for points, polylines, and polygons[J]. Computers & Geosciences, 2012, 42: 118-125. [22] 曹青, 唐天琪, 张翎, 等. 一种基于行人位置描述的道路模拟表达方法[J]. 地理与地理信息科学, 2017, 33(6):8-13. CAO Qing, TANG Tianqi, ZHANG Ling, et al. A road simulation representation method based on location descriptions of pedestrians[J]. Geography and Geo-Information Science, 2017, 33(6):8-13. [23] 郑束蕾, 黎雪儿. 认知(心象)地图助力寻亲成功[J]. 武汉大学学报(信息科学版), 2022, 47(12): 2153-2158. ZHENG Shulei, LI Xue'er. Home leading by mental map[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2153-2158. [24] MANLEY E, FILOMENA G, MAVROS P. A spatial model of cognitive distance in cities[J]. International Journal of Geographical Information Science, 2021, 35(11): 2316-2338. [25] WORBOYS M F. Nearness relations in environmental space [J]. International Journal of Geographical Information Science, 2001, 15(7): 633-651. [26] YAO Xiaobai, THILL J C. How far is too far?-a statistical approach to context-contingent proximity modeling[J]. Transactions in GIS, 2005, 9(2): 157-178. [27] YAO X, THILL J C. Spatial queries with qualitative locations in spatial information systems [J]. Computers, Environment and Urban Systems, 2006, 30(4): 485-502. [28] WANG Yankun, FAN Hong, WANG Luyao, et al. Indoors positioning based on spatial relationships in locality description[J]. IEEE Access, 2019, 8: 34794-34809. |