[1] 艾廷华, 张翔. 地理信息科学中尺度概念的诠释与表达[J]. 测绘学报, 2022, 51(7):1640-1652.DOI: 10.11947/j.AGCS.2022.20220143. AI Tinghua, ZHANG Xiang. An interpretation and representation of scale concept in geo-information sciences[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1640-1652.DOI: 10.11947/j.AGCS.2022.20220143. [2] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [3] WANG Z, TIAN S. Ground object information extraction from hyperspectral remote sensing images using deep learning algorithm[J]. Microprocessors and Microsystems, 2021, 87: 104394. [4] GONG J, JI S. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. [5] ZHU Y, ABDALLA A, TANG Z, et al.Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning[J]. Biosystems Engineering, 2022, 219: 165-176. [6] LALITHA V, LATHA B.A review on remote sensing imagery augmentation using deep learning[J]. Materials Today: Proceedings, 2022, 62: 4772-4778. [7] LUO M, JI S. Cross-spatiotemporal land-cover classification from VHR remote sensing images with deep learning based domain adaptation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191: 105-128. [8] 艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182.DOI: 10.11947/j.AGCS.2021.20210091. AI Tinghua. Some thoughts on deep learning enabling cartography[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182.DOI: 10.11947/j.AGCS.2021.20210091. [9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2022-11-20]. https://arxiv.org/abs/1609.02907.pdf. [10] ZHANG Yang, CHENG Tao, REN Yibin, et al. A novel residual graph convolution deep learning model for short-term network-based traffic forecasting[J]. International Journal of Geographical Information Science, 2020, 34(5): 969-995. [11] ZHANG Zhihao, HAN Yong, PENG Tongxin, et al. A comprehensive spatio-temporal model for subway passenger flow prediction[J]. ISPRS International Journal of Geo-Information, 2022, 11(6): 341. [12] WANG Yi, JING Changfeng. Spatiotemporal graph convolutional network for multi-scale traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2022, 11(2): 102. [13] 王米琪, 艾廷华, 晏雄锋, 等. 图卷积网络模型识别道路正交网格模式[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1960-1969. WANG Miqi, AI Tinghua, YAN Xiongfeng, et al. Grid pattern recognition in road networks based on graph convolution network model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1960-1969. [14] 王米琪. 基于图卷积神经网络的道路网模式识别[D]. 武汉: 武汉大学, 2021. WANG Miqi.Road network pattern recognition based on graph convolution neural network[D]. Wuhan: Wuhan University,2021. [15] YU H, AI T, YANG M, et al.A recognition method for drainage patterns using a graph convolutional network[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102696. [16] YU H, AI T, YANG M, et al.Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network[J]. Expert Systems with Applications, 2023, 211: 118639. [17] YAN X, AI T, YANG M, et al.A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 259-273. [18] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3): 490-512. [19] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph deep learning approach for urban building grouping[J]. Geocarto International, 2022, 37(10): 2944-2966. [20] 晏雄锋.深度卷积学习支持下的建筑物模式分析[D]. 武汉: 武汉大学,2019. YAN Xiongfeng.Building pattern analysis supported by deep convolution learning[D].Wuhan: Wuhan University,2019. [21] ZHAO Rong, AI Tinghua, YU Wenhao, et al. Recognition of building group patterns using graph convolutional network[J]. Cartography and Geographic Information Science, 2020, 47(5): 400-417. [22] LANGRAN C, POICKER T.Integration of name selection and name placement[C]//Proceedings of the 2nd International Symposium on Spatial Data Handling.Washington:IEEE,1986: 50-64. [23] SADAHIRO Y. Cluster perception in the distribution of point objects[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1997, 34(1): 49-62. [24] VAN K M, VAN O R, SNOEYINK J. Efficient settlement selection for interactive display[C]//Proceedings of 1997 Auto Carto Conference.Bethesda:IEEE,1997: 287-296. [25] 钱海忠, 武芳, 邓红艳. 基于CIRCLE特征变换的点群选取算法[J]. 测绘科学, 2005, 30(3): 83-85. QIAN Haizhong, WU Fang, DENG Hongyan. A model of point cluster selection with circle characters[J]. Science of Surveying and Mapping, 2005, 30(3): 83-85. [26] 钱海忠, 武芳, 谢鹏, 等. 基于CIRCLE特征变换的点群选取改进算法[J]. 测绘科学, 2006, 31(5):69-70, 59. QIAN Haizhong, WU Fang, XIE Peng, et al. An improved algorithm of point cluster selection based on circle characteristic transformation[J]. Science of Surveying and Mapping, 2006, 31(5):69-70, 59. [27] QIAN H, MENG L, ZHANG M. Network simplification based on the algorithm of polarization transformation[C]//Proceedings of 2007 International Cartographic Conference (ICC).Moscow:IEEE,2007. [28] 艾廷华, 刘耀林. 保持空间分布特征的群点化简方法[J]. 测绘学报, 2002, 31(2):175-181. AI Tinghua, LIU Yaolin. A method of point cluster simplification with spatial distribution properties preserved[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2):175-181. [29] YAN H, WEIBEL R.An algorithm for point cluster generalization based on the Voronoi diagram[J]. Computers & Geosciences, 2008, 34(8): 939-954. [30] 邓红艳, 武芳, 钱海忠, 等. 基于遗传算法的点群目标选取模型[J]. 中国图象图形学报,2003,8(8):124-130. DENG Hongyan, WU Fang, QIAN Haizhong,et al. A model of point cluster selection based on genetic algorithms[J]. Journal of Image and Graphics, 2003, 8(8):124-130. [31] WANG Lin, GUO Qingsheng, LIU Yuangang, et al. Contextual building selection based on a genetic algorithm in map generalization[J]. ISPRS International Journal of Geo-Information, 2017, 6(9): 271. [32] DE BERG M, BOSE P, CHEONG O, et al. On simplifying dot maps[J]. Computational Geometry: Theory and Applications, 2004, 27(1): 43-62. [33] LEE J, JANG H, YANG J, et al. Machine learning classification of buildings for map generalization[J]. ISPRS International Journal of Geo-Information, 2017, 6(10): 309. [34] KARSZNIA I, SIELICKA K. When traditional selection fails: how to improve settlement selection for small-scale maps using machine learning[J]. ISPRS International Journal of Geo-Information, 2020, 9(4): 230. [35] KARSZNIA I, WEIBEL R. Improving settlement selection for small-scale maps using data enrichment and machine learning[J]. Cartography and Geographic Information Science, 2018, 45(2): 111-127. [36] DU Jian, ZHANG Shanghang, WU Guanhang, et al. Topology adaptive graph convolutional networks[EB/OL].[2022-10-25]. https://arxiv.org/abs/1710.10370.pdf. [37] 艾廷华. Delaunay三角网支持下的空间场表达[J]. 测绘学报, 2006, 35(1):71-76, 82. AI Tinghua. A spatial field representation model based on Delaunay triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(1):71-76, 82. [38] 杨伟, 艾廷华. 运用约束Delaunay三角网从众源轨迹线提取道路边界[J]. 测绘学报, 2017, 46(2): 237-245.DOI: 10.11947/j.AGCS.2017.20160233. YANG Wei, AI Tinghua. The extraction of road boundary from crowd sourcing trajectory using constrained delaunay triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 237-245.DOI: 10.11947/j.AGCS.2017.20160233. [39] AI Tinghua, KE Shu, YANG Min, et al. Envelope generation and simplification of polylines using Delaunay triangulation[J]. International Journal of Geographical Information Science, 2017, 31(2): 297-319. [40] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(s1): 234-240. [41] TÖPFER F, PILLEWIZER W. The principles of selection[J]. The Cartographic Journal, 1966, 3(1): 10-16. [42] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |