测绘学报 ›› 2024, Vol. 53 ›› Issue (1): 189-198.doi: 10.11947/j.AGCS.2024.20230026

• 地图学与地理信息 • 上一篇    下一篇

利用多层次网眼特征和VAE-PNN模型识别城市道路格网模式

张云菲, 邱泽航   

  1. 长沙理工大学交通运输工程学院, 湖南 长沙 410114
  • 收稿日期:2023-02-03 修回日期:2023-11-28 发布日期:2024-02-06
  • 通讯作者: 邱泽航 E-mail:qiuzh@stu.csust.edu.cn
  • 作者简介:张云菲(1987-),女,博士,副教授,研究方向为时空数据分析、交通地理信息系统。E-mail:zhang.yunfei@csust.edu.cn
  • 基金资助:
    国家自然科学基金(42371474;41971421);教育部“春晖计划”合作科研项目(HZKY20220353);湖南省自然科学基金项目(2022JJ30590);湖南省科技创新计划(2021RC3099);长沙理工大学研究生实践创新项目(CLSJCX22018)

Grid patterns recognition in urban road networks using multi-level mesh features and VAE-PNN model

ZHANG Yunfei, QIU Zehang   

  1. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2023-02-03 Revised:2023-11-28 Published:2024-02-06
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42371474; 41971421); The “Chunhui Plan” collaborative research project of the Ministry of Education of China (No. HZKY20220353); The Natural Science Foundation of Hunan Province (No. 2022JJ30590); The Science and Technology Innovation Program of Hunan Province (No. 2021RC3099); Graduate Student Practice Innovation Project of Changsha University of Science and Technology (No. CLSJCX22018)

摘要: 作为道路网中普遍存在的显式模式之一,格网模式蕴含了丰富的城市空间格局信息,识别道路格网模式是实现自动化、智能化地图综合的关键前提。针对现有格网模式识别方法较少考虑多层次网眼特征,存在训练样本多样性不足等问题,本文提出一种基于多层次网眼特征和VAE-PNN模型的城市道路格网模式识别方法。首先,对原始路网数据进行化简;然后,设计了内部正交函数、格网形态描述和邻域相关关系的多层次网眼特征,进而利用变分自编码器(VAE)增强训练样本多样性;最后,借助概率神经网络(PNN)模型实现道路格网模式分类识别。试验结果表明,综合考虑多层次网眼特征能够准确识别不同类型、不同形态的道路格网模式,通过VAE样本增强有效提升分类模型性能和格网模式识别精度。

关键词: 格网模式识别, 多层次网眼特征, 变分自编码器, 概率神经网络

Abstract: As one of explicit patterns widely existing in urban road network, grid patterns contain a large amount of abundant information about urban spatial pattern. Recognizing road grid patterns is also the key prerequisite for realizing automatic and intelligent map generalization. As existing methods of grid pattern recognition seldom consider multi-level mesh features and may be sensitive to the diversity of training samples, this paper proposes a novel approach for urban road grid pattern recognition based on multi-level mesh features and VAE-PNN model. Firstly, the original road network data are simplified by sophisticated DP algorithm. Then, we design a set of multi-level mesh features to measure grid patterns, including internal orthogonal function, grid shape descriptions and neighborhood correlation indicators. After that, variational auto-encoder (VAE) is used to enhance the diversity and size of training samples. Finally, probabilistic neural network (PNN) model is adopted to identify road grid patterns. The experimental results show that considering multi-level mesh features can help to identify different grid types and various grid patterns and demonstrate that introducing VAE model achieves better performance on grid pattern recognition than not.

Key words: grid patterns recognition, multi-level mesh feature, variational auto encoder, probabilistic neural network

中图分类号: