[1] TEUNISSEN P, MONTENBRUCK O. Springer handbook of global navigation satellite systems[M].Berlin:Springer, 2017. [2] HEIN G W. Status, perspectives and trends of satellite navigation[J]. Satellite Navigation, 2020, 1(1):22. [3] YANG Yuanxi, GAO Weiguang, GUO Shuren, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1):7-18. [4] YANG Yuanxi, LIU Li, LI Jinlong, et al. Featured services and performance of BDS-3[J]. Science Bulletin, 2021, 66(20):2135-2143. [5] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B3):5005-5017. [6] LI Xin, LI Xingxing, HUANG Jiaxin, et al. Improving PPP-RTK in urban environment by tightly coupled integration of GNSS and INS[J]. Journal of Geodesy, 2021, 95(12):132. [7] HAUSCHILD A, MONTENBRUCK O, STEIGENBERGER P. Short-term analysis of GNSS clocks[J]. GPS Solutions, 2013, 17(3):295-307. [8] HUANG Guanwen, CUI Bobin, ZHANG Qin, et al. Switching and performance variations of on-orbit BDS satellite clocks[J]. Advances in Space Research, 2019, 63(5):1681-1696. [9] YE Zhen, LI Haojun, WANG Sanjun. Characteristic analysis of the GNSS satellite clock[J]. Advances in Space Research, 2021, 68(8):3314-3326. [10] HU Chao, WANG Zhongyuan, LÜ Weicai, et al. A method for updating GNSS satellite ultra-rapid clock offsets and orbits with the aid of a covariance intersection algorithm[J]. Acta Geodaetica et Geophysica, 2022, 57(1):63-84. [11] MACIUK K, LEWIHSK A. High-rate monitoring of satellite clocks using two methods of averaging time[J]. Remote Sensing, 2019, 11(23):2754. [12] ZHAO Q, GUO J, WANG C, et al. Precise orbit determination for BDS satellites[J]. Satellite Navigation, 2022, 3:21-26. [13] MACIUK K, KUDRYS J, SKORUPA B, et al. Testing the product quality of Galileo and GPS on-board oscillators[J]. Measurement, 2021, 167:108261. [14] XUE Huijie, NIE Wenfeng, XU Tianhe, et al. Establishment of iGMAST based on spaceborne atomic clocks by optimizing Kalman plus weights algorithm[J]. Measurement, 2022, 203:111998. [15] WEINBACH U, SCHÖN S. GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP[J]. Advances in Space Research, 2011, 47(2):229-238. [16] WEINBACH U, SCHÖN S. Improved GRACE kinematic orbit determination using GPS receiver clock modeling[J]. GPS Solutions, 2013, 17(4):511-520. [17] HACKEL S, STEIGENBERGER P, HUGENTOBLER U, et al. Galileo orbit determination using combined GNSS and SLR observations[J]. GPS Solutions, 2015, 19(1):15-25. [18] 于合理,郝金明,刘伟平,等. 附加原子钟物理模型的PPP时间传递算法[J]. 测绘学报,2016, 45(11):1285-1292.DOI:10.11947/j.AGCS.2016.20160217. YU Heli, HAO Jinming, LIU Weiping,et al. A time transfer algorithm of precise point positioning with additional atomic clock physical model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1285-1292.DOI:10.11947/j.AGCS.2016.20160217. [19] QING Yun, LOU Yidong, DAI Xiaolei, et al. Benefits of satellite clock modeling in BDS and Galileo orbit determination[J]. Advances in Space Research, 2017, 60(12):2550-2560. [20] PENG Yaquan, LOU Yidong, GONG Xiaopeng, et al. Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning[J]. Advances in Space Research, 2019, 64(7):1445-1454. [21] WANG Kan, ROTHACHER M. Stochastic modeling of high-stability ground clocks in GPS analysis[J]. Journal of Geodesy, 2013, 87(5):427-437. [22] GE Yulong, ZHOU Feng, LIU Tianjun, et al. Enhancing real-time precise point positioning time and frequency transfer with receiver clock modeling[J]. GPS Solutions, 2018, 23(1):20. [23] 李敏. 多模GNSS融合精密定轨理论及其应用研究[D]. 武汉:武汉大学, 2011. LI Min. Research on multi-GNSS precise orbit determination theory and application[D]. Wuhan:Wuhan University, 2011. [24] 丁文武, 欧吉坤, 李子申, 等. 附加电离层延迟约束的实时动态PPP快速重新初始化方法[J]. 地球物理学报, 2014, 57(6):1720-1731. DING Wenwu, OU Jikun, LI Zishen, et al. Instantaneous re-initialization method of real time kinematic PPP by adding ionospheric delay constraints[J]. Chinese Journal of Geophysics, 2014, 57(6):1720-1731. [25] CHEN Junping, ZHANG Yize, WANG Jungang, et al. A simplified and unified model of multi-GNSS precise point positioning[J]. Advances in Space Research, 2015, 55(1):125-134. [26] LOU Yidong, DAI Xiaolei, GONG Xiaopeng, et al. A review of real-time multi-GNSS precise orbit determination based on the filter method[J]. Satellite Navigation, 2022, 3(1):15. [27] DAI Xiaolei, LOU Yidong, DAI Zhiqiang, et al. Precise orbit determination for GNSS maneuvering satellite with the constraint of a predicted clock[J]. Remote Sensing, 2019, 11(16):1949. [28] WANG Qianxin, HU Chao, ZHANG Kefei. A BDS-2/BDS-3 integrated method for ultra-rapid orbit determination with the aid of precise satellite clock offsets[J]. Remote Sensing, 2019, 11(15):1758. [29] 陈倩, 陈俊平, 吴杉, 等. 基于预报钟差的轨道快速恢复[J]. 测绘学报, 2020, 49(1):24-33.DOI:10.11947/j.AGCS.2020.20190078. CHEN Qian, CHEN Junping, WU Shan, et al. Post-maneuver orbit determination based on the predicted clocks[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1):24-33.DOI:10.11947/j.AGCS.2020.20190078. [30] QAFISHEH M, MARTÍN A, CAPILLA R M, et al. SVR and ARIMA models as machine learning solutions for solving the latency problem in real-time clock corrections[J]. GPS Solutions, 2022, 26(3):85. [31] OGUTCU S, FARHAN H T. Assessment of the GNSS PPP performance using ultra-rapid and rapid products from different analysis centres[J]. Survey Review, 2022, 54(382):34-47. [32] FU W, WANG L, CHEN R, et al. Combined BDS-2/BDS-3 real-time satellite clock estimation with the overlapping B1I/B3I signals[J]. Advances in Space Research, 2021, 68(2021):4470-4483. [33] LI Xingxing, CHEN Xinghan, GE Maorong, et al. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning[J]. Journal of Geodesy, 2019, 93(1):45-64. [34] SHI Junbo, OUYANG Chenhao, HUANG Yongshuai, et al. Assessment of BDS-3 global positioning service:ephemeris, SPP, PPP, RTK, and new signal[J]. GPS Solutions, 2020, 24(3):81. [35] ZHAO Q, GUO J, WANG C, et al. Precise orbit determination for BDS satellites[J]. Satellite Navigation, 2022, 3(1):2-6. [36] 程彤, 王潜心, 胡超, 等. BDS-2和BDS-3卫星原子钟特性分析[J]. 测绘科学, 2020, 45(12):69-76. CHENG Tong, WANG Qianxin, HU Chao, et al. Analysis of the atomic clock characteristics of BDS-2 and BDS-3 satellites[J]. Science of Surveying and Mapping, 2020, 45(12):69-76. [37] GUO Jing, WANG Chen, CHEN Guo, et al. BDS-3 precise orbit and clock solution at Wuhan University:status and improvement[J]. Journal of Geodesy, 2023, 97(2):15. [38] 郭丽, 黄逸丹, 李金岭, 等. 基于同波束VLBI测量对嫦娥五号卫星交汇对接的相对实时定位[J]. 测绘学报, 2023, 52(3):375-382.DOI:10.11947/j.AGCS.2023.20210351. GUO Li, HUANG Yidan, LI Jinling, et al. Real-time relative positioning of Chang'e-5 satellite in rendezvous and docking with the same-beam VLBI differential observations[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3):375-382. DOI:10.11947/j.AGCS.2023.20210351. |