测绘学报 ›› 2024, Vol. 53 ›› Issue (7): 1429-1443.doi: 10.11947/j.AGCS.2024.20230410
张彬1,2,3(), 胡守庚1,2(), 王海军4, 郭颖5, 童陆亿1,2, 夏天顺1
收稿日期:
2023-09-14
发布日期:
2024-08-12
通讯作者:
胡守庚
E-mail:binzhang94@163.com;hushougeng@cug.edu.cn
作者简介:
张彬(1994—),男,博士,副教授,研究方向为土地利用变化分析与模拟。E-mail:binzhang94@163.com
基金资助:
Bin ZHANG1,2,3(), Shougeng HU1,2(), Haijun WANG4, Ying GUO5, Luyi TONG1,2, Tianshun XIA1
Received:
2023-09-14
Published:
2024-08-12
Contact:
Shougeng HU
E-mail:binzhang94@163.com;hushougeng@cug.edu.cn
About author:
ZHANG Bin (1994—), male, PhD, associate professor, majors in land use change analysis and simulation. E-mail: binzhang94@163.com
Supported by:
摘要:
城镇扩展模拟预测是支撑国土空间规划、实现城镇化高质量发展的重要手段,提高其科学性和实用性有助于精确把握城镇扩展趋势,对国土资源的合理和可持续利用意义重大。现有以元胞自动机(CA)为基础的模型着重于刻画空间因子驱动的城镇自然扩展过程,智能体模型(ABM)则在模拟城镇自组织扩展方面具有理论优势,而且已有的耦合方法多为基于模拟步骤的模型级联,难以实现二者紧密耦合以充分发挥其在模拟城镇自然和自组织扩展方面的优势。本文基于CA的结构开放性和ABM的理论优势,以可达性为媒介表征城镇扩展局部自组织过程的范围差异,并依据博弈论设计利益相关者之间的局部自组织规则,将ABM刻画的人地交互决策融入CA邻域构建,建立一种可以精细刻画城镇自组织扩展过程的CA-ABM耦合模拟及预测模型(CA-ABM-LSO),实现CA和ABM在底层结构的深度集成和城镇自然与自组织扩展过程的耦合模拟。以武汉市为例对其进行应用,结果表明:基于CA和ABM的优势互补特点进行耦合建模,能够充分发挥二者在刻画城镇自然和自组织扩展方面的优势,显著提升城镇扩展模拟精度,并改善模拟城镇斑块的景观形态;基于博弈论的局部自组织规则可有效实现宏观经济政策对微观智能体交互决策的指导,提高城镇扩展模拟的科学性和规划实用性;预计至2035年,武汉市城镇扩展的重点区域集中在高新科技园区和运输集散中心附近,这符合“武鄂黄黄”都市圈的发展预期,可为其空间规划提供决策支持。
中图分类号:
张彬, 胡守庚, 王海军, 郭颖, 童陆亿, 夏天顺. 精细刻画城镇自组织扩展过程的CA-ABM耦合模拟及预测模型[J]. 测绘学报, 2024, 53(7): 1429-1443.
Bin ZHANG, Shougeng HU, Haijun WANG, Ying GUO, Luyi TONG, Tianshun XIA. A CA-ABM-coupled simulation and prediction model for finely depicting the local self-organization process of urban expansion[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1429-1443.
表3
可达性评价变量的含义及权重"
交通相关评价变量 | 变量含义 | 评价权重 |
---|---|---|
den_TRW | 主干道路密度 | 0.073 1 |
den_PRW | 一级道路密度 | 0.051 1 |
den_SEW | 二级道路密度 | 0.041 4 |
den_TEW | 三级道路密度 | 0.034 6 |
den_RST | 火车站密度 | 0.110 1 |
den_BST | 长途汽车站密度 | 0.089 9 |
den_MST | 地铁站密度 | 0.089 4 |
den_BSP | 公交车站密度 | 0.032 9 |
den_EEW | 快速路出入口密度 | 0.095 9 |
den_ESW | 高速出入口密度 | 0.101 3 |
den_CRO | 十字路口密度 | 0.050 8 |
den_FLY | 立交桥密度 | 0.089 4 |
den_GST | 加油站密度 | 0.063 1 |
den_PAL | 停车场密度 | 0.077 0 |
表6
智能体交互决策调节参数的敏感性分析"
K(α=β=γ=0.5) | 发生交互决策的迭代次数 | α(β=0.5,γ=0.5) | 改变政府决策的新增城镇元胞数量 | β(α=0.5) | 改变开发商决策的新增城镇元胞数量 | γ(α=0.5) | 改变居民决策的新增城镇元胞数量 |
---|---|---|---|---|---|---|---|
1 | 40 | 0.1 | 37 5870 | 0.9 | 166 019 | 0.1 | 20 821 |
3 | 40 | 0.2 | 382 874 | 0.8 | 165 300 | 0.2 | 21 988 |
5 | 40 | 0.3 | 384 946 | 0.7 | 166 350 | 0.3 | 22 030 |
7 | 40 | 0.4 | 386 965 | 0.6 | 166 183 | 0.4 | 22 074 |
9 | 36 | 0.5 | 387 971 | 0.5 | 166 971 | 0.5 | 22 065 |
11 | 32 | 0.6 | 387 970 | 0.4 | 166 483 | 0.6 | 22 295 |
13 | 27 | 0.7 | 389 124 | 0.3 | 165 453 | 0.7 | 22 359 |
15 | 14 | 0.8 | 389 122 | 0.2 | 163 405 | 0.8 | 22 802 |
17 | 3 | 0.9 | 389 627 | 0.1 | 159 049 | 0.9 | 22 917 |
19 | 0 | 1.0 | 389 082 | — | — | — | — |
[1] | 陆大道, 陈明星. 关于“国家新型城镇化规划(2014—2020)” 编制大背景的几点认识[J]. 地理学报, 2015, 70(2):179-185. |
LU Dadao, CHEN Mingxing. Several viewpoints on the background of compiling the “National New Urbanization Planning (2014—2020)”[J]. Acta Geographica Sinica, 2015, 70(2):179-185. | |
[2] | 姚士谋, 张平宇, 余成, 等. 中国新型城镇化理论与实践问题[J]. 地理科学, 2014, 34(6):641-647. |
YAO Shimou, ZHANG Pingyu, YU Cheng, et al. The theory and practice of new urbanization in China[J]. Scientia Geographica Sinica, 2014, 34(6):641-647. | |
[3] | 傅伯杰, 张立伟. 土地利用变化与生态系统服务:概念、方法与进展[J]. 地理科学进展, 2014, 33(4):441-446. |
FU Bojie, ZHANG Liwei. Land-use change and ecosystem services: concepts, methods and progress[J]. Progress in Geography, 2014, 33(4):441-446. | |
[4] | 刘彦随, 龙花楼, 李裕瑞. 全球乡城关系新认知与人文地理学研究[J]. 地理学报, 2021, 76(12):2869-2884. |
LIU Yansui, LONG Hualou, LI Yurui. Human geography research based on the new thinking of global rural-urban relationship[J]. Acta Geographica Sinica, 2021, 76(12):2869-2884. | |
[5] | 李少英, 刘小平, 黎夏, 等. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 2017, 21(3):329-340. |
LI Shaoying, LIU Xiaoping, LI Xia, et al. Simulation model of land use dynamics and application: progress and prospects[J]. Journal of Remote Sensing, 2017, 21(3):329-340. | |
[6] | 赵莉, 杨俊, 李闯, 等. 地理元胞自动机模型研究进展[J]. 地理科学, 2016, 36(8):1190-1196. |
ZHAO Li, YANG Jun, LI Chuang, et al. Progress on geographic cellular automata model[J]. Scientia Geographica Sinica, 2016, 36(8):1190-1196. | |
[7] | 吴欣昕, 刘小平, 梁迅, 等. FLUS-UGB多情景模拟的珠江三角洲城市增长边界划定[J]. 地球信息科学学报, 2018, 20(4):532-542. |
WU Xinxin, LIU Xiaoping, LIANG Xun, et al. Multi-scenarios simulation of urban growth boundaries in Pearl River Delta based on FLUS-UGB[J]. Journal of Geo-Information Science, 2018, 20(4):532-542. | |
[8] | 丛佃敏, 赵书河, 于涛, 等. 综合生态安全格局构建与城市扩张模拟的城市增长边界划定:以天水市规划区(2015—2030年)为例[J]. 自然资源学报, 2018, 33(1):14-26. |
CONG Dianmin, ZHAO Shuhe, YU Tao, et al. Urban growth boundary delimitation method integrating comprehensive ecological security pattern and urban expansion simulation: a case study of planning areas in Tianshui city (2015—2030)[J]. Journal of Natural Resources, 2018, 33(1):14-26. | |
[9] | WU Fulong. Calibration of stochastic cellular automata: the application to rural-urban land conversions[J]. International Journal of Geographical Information Science, 2002, 16(8):795-818. |
[10] | POELMANS L, VAN ROMPAEY A. Complexity and performance of urban expansion models[J]. Computers, Environment and Urban Systems, 2010, 34(1):17-27. |
[11] | 刘毅, 杨晟, 陈吉宁, 等. 基于元胞自动机模型的城市土地利用变化模拟[J]. 清华大学学报(自然科学版), 2013, 53(1):72-77. |
LIU Yi, YANG Sheng, CHEN Jining, et al. Urban land use changes predictions using a cellular automata model[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(1):72-77. | |
[12] | LI Xuecao, LIU Xiaoping, YU Le. A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules[J]. International Journal of Geographical Information Science, 2014, 28(7):1317-1335. |
[13] | 李岩, 林安琪, 吴浩, 等. 顾及空间尺度效应的城市土地利用变化精细化模拟[J]. 地理学报, 2022, 77(11):2738-2756. |
LI Yan, LIN Anqi, WU Hao, et al. Refined simulation of urban land use change with emphasis on spatial scale effect[J]. Acta Geographica Sinica, 2022, 77(11):2738-2756. | |
[14] | FENG Yongjiu, TONG Xiaohua. Incorporation of spatial heterogeneity-weighted neighborhood into cellular automata for dynamic urban growth simulation[J]. GIScience & Remote Sensing, 2019, 56(7):1024-1045. |
[15] | LIU Xiaoping, LIANG Xun, LI Xia, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116. |
[16] | LIANG Xun, GUAN Qingfeng, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85:101569. |
[17] | HEROLD M, GOLDSTEIN N C, CLARKE K C. The spatiotemporal form of urban growth: measurement, analysis and modeling[J]. Remote Sensing of Environment, 2003, 86(3):286-302. |
[18] | VERBURG P H, SOEPBOER W, VELDKAMP A, et al. Modeling the spatial dynamics of regional land use: the CLUE-S model[J]. Environmental Management, 2002, 30(3):391-405. |
[19] | JIANG Jiang, WANG Wang, XU Gang, et al. Urban development boundary simulation based on “double evaluation” and FLUS model[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):7-18. |
[20] | ZHANG Bin, WANG Haijun. A new type of dual-scale neighborhood based on vectorization for cellular automata models[J]. GIScience & Remote Sensing, 2021, 58(3):386-404. |
[21] | ZHANG Bin, HU Shougeng, WANG Haijun, et al. A size-adaptive strategy to characterize spatially heterogeneous neighborhood effects in cellular automata simulation of urban growth[J]. Landscape and Urban Planning, 2023, 229:104604. |
[22] | LIU Dongya, ZHENG Xinqi, WANG Hongbin. Land-use simulation and decision-support system (LandSDS): seamlessly integrating system dynamics, agent-based model, and cellular automata[J]. Ecological Modelling, 2020, 417:108924. |
[23] | 何青松, 谭荣辉, 杨俊. 基于近邻传播聚类元胞自动机模型的武汉城市扩散和聚合过程同步模拟[J]. 地理学报, 2021, 76(10):2522-2535. |
HE Qingsong, TAN Ronghui, YANG Jun. Synchronized simulation of urban diffusional and aggregational process based on the affinity propagation cellular automata: a case study of Wuhan city[J]. Acta Geographica Sinica, 2021, 76(10):2522-2535. | |
[24] | 张鸿辉, 曾永年, 金晓斌, 等. 多智能体城市土地扩张模型及其应用[J]. 地理学报, 2008, 63(8):869-881. |
ZHANG Honghui, ZENG Yongnian, JIN Xiaobin, et al. Urban land expansion model based on multi-agent system and application[J]. Acta Geographica Sinica, 2008, 63(8):869-881. | |
[25] | 杨青生, 黎夏. 多智能体与元胞自动机结合及城市用地扩张模拟[J]. 地理科学, 2007, 27(4):542-548. |
YANG Qingsheng, LI Xia. Integration of multi-agent systems with cellular automata for simulating urban land expansion[J]. Scientia Geographica Sinica, 2007, 27(4):542-548. | |
[26] | 陈宝芬, 张耀民, 江东. 基于CA-ABM模型的福州城市用地扩张研究[J]. 地理科学进展, 2017, 36(5):626-634. |
CHEN Baofen, ZHANG Yaomin, JIANG Dong. Urban land expansion in Fuzhou city based on coupled cellular automata and agent-based models (CA-ABM)[J]. Progress in Geography, 2017, 36(5):626-634. | |
[27] | LI Xia, CHEN Yimin, LIU Xiaoping, et al. Concepts, methodologies, and tools of an integrated geographical simulation and optimization system[J]. International Journal of Geographical Information Science, 2011, 25(4):633-655. |
[28] | TAN Ronghui, LIU Yaolin, ZHOU Kehao, et al. A game-theory based agent-cellular model for use in urban growth simulation: a case study of the rapidly urbanizing Wuhan area of central China[J]. Computers, Environment and Urban Systems, 2015, 49:15-29. |
[29] | XU Tingting, GAO J, COCO G, et al. Urban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model[J]. International Journal of Geographical Information Science, 2020, 34(11):2136-2159. |
[30] | LI Xia, LIU Xiaoping. Defining agents' behaviors to simulate complex residential development using multicriteria evaluation[J]. Journal of Environmental Management, 2007, 85(4):1063-1075. |
[31] | LIU Yaolin, KONG Xuesong, LIU Yanfang, et al. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata[J]. PLoS One, 2013, 8(11):e79300. |
[32] | KONG Lingqiang, TIAN Guangjin, MA Bingran, et al. Embedding ecological sensitivity analysis and new satellite town construction in an agent-based model to simulate urban expansion in the Beijing metropolitan region, China[J]. Ecological Indicators, 2017, 82:233-249. |
[33] | MA Bingran, TIAN Guangjin, KONG Lingqiang, et al. How China's linked urban-rural construction land policy impacts rural landscape patterns: a simulation study in Tianjin, China[J]. Landscape Ecology, 2018, 33(8):1417-1434. |
[34] | JIANG Xue, LI Bingxin, ZHAO Hongyu, et al. Examining the spatial simulation and land-use reorganisation mechanism of agricultural suburban settlements using a cellular-automata and agent-based model: six settlements in China[J]. Land Use Policy, 2022, 120:106304. |
[35] | LIGTENBERG A, BREGT A K, VAN LAMMEREN R. Multi-actor-based land use modelling: spatial planning using agents[J]. Landscape and Urban Planning, 2001, 56(1/2):21-33. |
[36] | NAINGGOLAN D, TERMANSEN M, FLESKENS L, et al. What does the future hold for semi-arid Mediterranean agro-ecosystems?Exploring cellular automata and agent-based trajectories of future land-use change[J]. Applied Geography, 2012, 35(1/2):474-490. |
[37] | MUSTAFA A, COOLS M, SAADI I, et al. Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)[J]. Land Use Policy, 2017, 69:529-540. |
[38] | CHEN Yimin, LI Xia, LIU Xiaoping, et al. Simulating urban growth boundaries using a patch-based cellular automaton with economic and ecological constraints[J]. International Journal of Geographical Information Science, 2019, 33(1):55-80. |
[39] | QIN Kun, LIN Hui, YUE Yang, et al. Spatial humanities and geo-computation for social sciences: advances and applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):1-6. |
[40] | BARBER B M, ODEAN T. All that glitters: the effect of attention and news on the buying behavior of individual and institutional investors[J]. The Review of Financial Studies, 2008, 21(2):785-818. |
[41] | 柴彦威, 张雪, 孙道胜. 基于时空间行为的城市生活圈规划研究:以北京市为例[J]. 城市规划学刊, 2015(3):61-69. |
CHAI Yanwei, ZHANG Xue, SUN Daosheng. A study on life circle planning based on space time behavioural analysis: a case study of Beijing[J]. Urban Planning Forum, 2015(3):61-69. | |
[42] | DURAN-FERNANDEZ R, SANTOS G. A regional model of road accessibility in Mexico: accessibility surfaces and robustness analysis[J]. Research in Transportation Economics, 2014, 46:55-69. |
[43] | GEURS K T, VAN WEE B. Accessibility evaluation of land-use and transport strategies: review and research directions[J]. Journal of Transport Geography, 2004, 12(2):127-140. |
[44] | TONG Xiaohua, FENG Yongjiu. A review of assessment methods for cellular automata models of land-use change and urban growth[J]. International Journal of Geographical Information Science, 2020, 34(5):866-898. |
[45] | ZHANG Bin, LI Xuecao, WANG Haijun, et al. Modeling self-organized urban growth by incorporating stakeholders' interactions into the neighborhood of cellular automata[J]. Cities, 2024, 149:104976. |
[46] | ZHANG Bin, HU Shougeng, WANG Haijun, et al. Incorporating spatial heterogeneity to model spontaneous and self-organized urban growth[J]. Applied Geography, 2024, 163:103196. |
[1] | 赵冰冰, 谭骁勇, 杨学习, 石岩, 邓敏. 融合地理条件驱动效应和图卷积的土地利用演化模拟CA模型[J]. 测绘学报, 2023, 52(5): 831-842. |
[2] | 王海军, 常瑞寒, 李启源, 周晓艳, 王权, 曾浩然, 刘一宁, 岳照溪. 顾及空间多尺度邻域效应和时间依赖性的城市扩展模拟[J]. 测绘学报, 2023, 52(10): 1772-1783. |
[3] | 谢志文, 王海军, 张彬, 黄鑫鑫. 城市扩展元胞自动机多结构卷积神经网络模型[J]. 测绘学报, 2020, 49(3): 375-385. |
[4] | 王加胜, 杨昆, 朱彦辉, 熊建红. 海上距离元胞自动机分析法[J]. 测绘学报, 2019, 48(3): 384-392. |
[5] | 王鹤, 曾永年. 城市扩展极限学习机模型[J]. 测绘学报, 2018, 47(12): 1680-1690. |
[6] | 余接情, 石珍, 吴立新, 邢松伟, 贾永基. 基于SDOG-ESSG的地球系统元胞自动机框架及其应用试验[J]. 测绘学报, 2016, 45(S1): 40-47. |
[7] | 王海鹰,张新长. 基于CA模型的三维虚拟城市构建方法研究[J]. 测绘学报, 2009, 38(6): 0-501. |
[8] | 郭健 张继贤 张永红 曹银璇 |
[9] | 田根 刘妙龙 童小华 . 基于Mobile Agent的空间信息移动服务网格分布计算模型 [J]. 测绘学报, 2009, 38(1): 0-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||