测绘学报 ›› 2024, Vol. 53 ›› Issue (9): 1694-1705.doi: 10.11947/j.AGCS.2024.20240071

• 精密工程测量 • 上一篇    

桥梁实景三维高斯辐射场建模

马威1,2,3(), 涂强1, 潘建平1,2,3(), 赵立都1, 涂伟4,5,6,7, 李清泉4,5,6,7   

  1. 1.重庆交通大学智慧城市学院,重庆 400074
    2.自然资源部国土空间规划监测评估预警重点实验室,重庆 400074
    3.自然资源部智能城市时空信息与装备工程技术创新中心,重庆 401121
    4.深圳大学建筑与城市规划学院城市空间信息工程系,广东 深圳 518060
    5.空间信息智能感知与服务深圳市重点实验室,广东 深圳 518060
    6.广东省城市空间信息工程重点实验室,广东 深圳 518060
    7.自然资源部大湾区地理环境监测重点实验室,广东 深圳 518060
  • 收稿日期:2024-02-21 发布日期:2024-10-16
  • 通讯作者: 潘建平 E-mail:weima@cqjtu.edu.cn;panjianping@qq.com;panJianping@qq.com
  • 作者简介:马威(1987—),男,博士,副教授,研究方向为智能测绘与场景感知、视觉三维重建、地理增强现实。E-mail:weima@cqjtu.edu.cn
  • 基金资助:
    自然资源部国土空间规划监测评估预警重点实验室开放基金资助项目(LMEE-KF2023004);自然资源部智能城市时空信息与装备工程技术创新中心开放基金(STIEIC-KF202305);国家自然科学青年基金(42001324);重庆市教育委员会科学技术研究项目(KJQN202200744);重庆市自然科学基金(cstc2021jcyj-msxmX1147);宁夏回族自治区重点研发计划(2022CMG02014);重庆市研究生联合培养基地建设项目(JDLHPYJD2019004)

3D Gaussian radiation field modeling for real-scene bridges

Wei MA1,2,3(), Qiang TU1, Jianping PAN1,2,3(), Lidu ZHAO1, Wei TU4,5,6,7, Qingquan LI4,5,6,7   

  1. 1.College of Smart City, Chongqing Jiaotong University, Chongqing 400074, China
    2.Key Laboratory of Land Space Planning Monitoring, Evaluation, and Early Warning, Ministry of Natural Resources, Chongqing 400074, China
    3.Engineering Technology Innovation Center for Smart City Spatiotemporal Information and Equipment, Ministry of Natural Resources, Chongqing 401121, China
    4.Department of Urban Spatial Information Engineering, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
    5.Key Laboratory of Intelligent Perception and Services for Spatial Information, Shenzhen 518060, China
    6.Key Laboratory of Urban Spatial Information Engineering of Guangdong Province, Shenzhen 518060, China
    7.Key Laboratory of Geographic Environment Monitoring in the Greater Bay Area, Ministry of Natural Resources, Shenzhen 518060, China
  • Received:2024-02-21 Published:2024-10-16
  • Contact: Jianping PAN E-mail:weima@cqjtu.edu.cn;panjianping@qq.com;panJianping@qq.com
  • About author:MA Wei (1987—), male, PhD, associate professor, majors in intelligent remote sensing methods and applications, spatiotemporal big data engineering. E-mail: weima@cqjtu.edu.cn
  • Supported by:
    The Open Fund of the Key Laboratory of Monitoring, Evaluation, and Early Warning of Territorial Spatial Planning, Ministry of Natural Resources(LMEE-KF2023004);The Open Fund of the Engineering Technology Innovation Center for Smart City Spatio-temporal Information and Equipment, Ministry of Natural Resources(STIEIC-KF202305);The National Natural Science Foundation of China(42001324);The Science and Technology Research Project of Chongqing Education Commission(KJQN202200744);Chongqing Natural Science Foundation(cstc2021jcyj-msxmX1147);The Key Research and Development Program of Ningxia Hui Autonomous Region(2022CMG02014);Chongqing Graduate Joint Training Base Construction Project(JDLHPYJD2019004)

摘要:

实景三维和数字孪生已成为桥梁运维和管理的重要基础,然而面对桥梁的复杂几何结构,现有三维建模方法存在原始数据采集量大、建模效率低、模型细节缺失或变形等问题。对此,本文研究了一种基于3D高斯辐射场的桥梁实景三维重建方法。利用3D高斯函数对采集图像生成的稀疏点云构建高斯辐射场,并基于随机梯度下降对辐射场参数进行自适应优化,通过可微光栅渲染对三维模型进行实时可视化,从而实现高质量桥梁三维重建和渲染。试验探讨了不同图像分辨率,以及各项参数变化对桥梁建模的影响,并与传统方法作对比,为进一步针对桥梁的应用提供理论和技术支撑,推动桥梁复杂结构的高效、准确实景三维重建。

关键词: 3D高斯辐射场, 桥梁实景三维重建, 随机梯度下降, 可微光栅渲染

Abstract:

Realistic 3D modeling and digital twins have become essential foundations for bridge operation and management. However, given the complex geometric structures of bridges, current 3D modeling methods face issues such as large amounts of raw data collection, low modeling efficiency, and missing or deformed model details. In response to these challenges, this paper investigates a bridge realistic 3D reconstruction method based on 3D Gaussian radiance fields. This method utilizes 3D Gaussian functions to construct a Gaussian radiance field from sparse point clouds generated by captured images. Adaptive optimization of radiance field parameters is performed based on stochastic gradient descent, and real-time visualization of the 3D model is achieved through differentiable rasterization, resulting in high-quality bridge 3D reconstruction and rendering. The study explores the impact of different image resolutions and various parameter changes on bridge modeling. Comparisons with traditional methods are made to provide theoretical and technical support for further bridge applications, promoting efficient and accurate realistic 3D reconstruction of complex bridge structures.

Key words: 3D Gaussian splatting, 3D bridge reconstruction, stochastic gradient descent, differentiable rasterizer rendering

中图分类号: