测绘学报 ›› 2024, Vol. 53 ›› Issue (9): 1790-1798.doi: 10.11947/j.AGCS.2024.20230546

• 大地测量与导航 • 上一篇    

子午线弧长正解展开通式及数学分析

周东权1,2(), 边少锋2(), 黄晓颖3   

  1. 1.中国地质大学(武汉)地理与信息工程学院,湖北 武汉 430078
    2.中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北 武汉 430074
    3.海军工程大学作战运筹与规划系,湖北 武汉 430033
  • 收稿日期:2023-12-05 发布日期:2024-10-16
  • 通讯作者: 边少锋 E-mail:1431645283@qq.com;sfbian@sina.com
  • 作者简介:周东权(1999—),男,硕士,研究方向为椭球大地测量。E-mail:1431645283@qq.com
  • 基金资助:
    国家自然科学基金(42342024);中央高校基金(GLAB2024ZR05)

General series expansion and mathematical analysis of the direct solution of meridian arc length

Dongquan ZHOU1,2(), Shaofeng BIAN2(), Xiaoying HUANG3   

  1. 1.School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430078, China
    2.Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences (Wuhan), Wuhan 430074, China
    3.Department of Operational Research and Programing, Naval University of Engineering, Wuhan 430033, China
  • Received:2023-12-05 Published:2024-10-16
  • Contact: Shaofeng BIAN E-mail:1431645283@qq.com;sfbian@sina.com
  • About author:ZHOU Dongquan (1999—), male, master, majors in ellipsoidal geodesy. E-mail: 1431645283@qq.com
  • Supported by:
    The National Natural Science Foundation of China(42342024);The Opening fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(GLAB2024ZR05)

摘要:

子午线弧长公式通常表示为大地纬度B的级数展开式,其系数以第一偏心率e为参数,本文利用第三扁率n对公式进行重新推导,并将其表示为三角函数的3种形式:倍角形式、指数形式和二倍角形式。重新推导的公式中各系数中的分母值都明显变小,个别高阶项系数消失,结构简单、形式简洁。基于此,对3种表示形式的8阶展开式和10阶展开式进行截断误差分析,结果表明3种表示形式的8阶展开式精度最低也有毫米级,能满足日常的使用场景,而10阶展开式精度提高了至少2个数量级,能满足高精度的使用场景。在高精度的使用场景下,不同表示形式的子午线弧长公式具有不同的实用性,分析表明在0°N—30°N低纬度地区推荐使用三角函数的指数形式,在30°N—55°N中纬度地区推荐使用三角函数的二倍角形式,而在55°N—90°N高纬度地区推荐使用三角函数的倍角形式。

关键词: 子午线弧长, 第三扁率, 数学分析, 区域分析

Abstract:

The meridian arc length formula is usually expressed as a series expansion of the geodesic latitude B, whose coefficients are parameterized by first eccentricity e. In this paper, the formula is rederived using third flattening n and expressed as three forms of trigonometric functions: multiple angle form, exponential form, and double dangle form.The denominator value in each coefficient in the rederived formula is obviously smaller, and the individual higher-order term coefficients disappear, with a simple structure and concise form. Based on this, the truncation error analysis of the 8th-order and 10th-order expanded formulas of the three representations shows that the accuracy of the 8th-order expanded formulas of the three representations is at least millimeters, which can satisfy the daily use scenarios, while the accuracy of the 10th-order expanded formulas has been improved by at least two orders of magnitude, which can satisfy the high-precision use scenarios. Under the high-precision use scenario, the meridian arc length formulas of different representations have different practicality, and the analysis shows that the exponential form of trigonometric function is recommended at the low latitude of 0°N—30°N, double angle form of trigonometric function is recommended at the middle latitude of 30°N—55°N, and the multiple angle form of trigonometric function is recommended at the high latitude of 55°N—90°N.

Key words: meridian arc length, third flattening, mathematical analysis, regional analysis

中图分类号: