测绘学报 ›› 2025, Vol. 54 ›› Issue (4): 760-772.doi: 10.11947/j.AGCS.2025.20240165

• 摄影测量学与遥感 • 上一篇    

高速公路点线特征集成的车载移动测量系统跨模态传感器自检校方法

张岱伟1(), 葛旭明2(), 胡翰2, 朱庆1,2, 徐博2, 王强1   

  1. 1.兰州交通大学测绘与地理信息学院,甘肃 兰州 730070
    2.西南交通大学地球科学与环境工程学院,四川 成都 611756
  • 收稿日期:2024-04-19 发布日期:2025-05-30
  • 通讯作者: 葛旭明 E-mail:0119064@stu.lzjtu.edu.cn;xuming.ge@swjtu.edu.cn
  • 作者简介:张岱伟(1993—),男,博士生,研究方向为全景摄影测量、传感器检校及误差理论。 E-mail:0119064@stu.lzjtu.edu.cn
  • 基金资助:
    国家自然科学基金(42230102);四川省杰出青年基金(22JCQN0110)

Cross-modal sensor self-calibration method for highway point-line feature integrated mobile mapping system

Daiwei ZHANG1(), Xuming GE2(), Han HU2, Qing ZHU1,2, Bo XU2, Qiang WANG1   

  1. 1.Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2024-04-19 Published:2025-05-30
  • Contact: Xuming GE E-mail:0119064@stu.lzjtu.edu.cn;xuming.ge@swjtu.edu.cn
  • About author:ZHANG Daiwei (1993—), male, PhD candidate, majors in panoramic photogrammetry, sensor calibration and error theory. E-mail: 0119064@stu.lzjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42230102);The Sichuan Science and Technology Fund for Distinguished Young Scholars(22JCQN0110)

摘要:

车载移动测量系统受到预检校误差、安置误差与相机投影误差的影响,导致获取的点云与全景影像序列数据之间出现不匹配。在高速公路场景中,现有检校方法由于高速公路的带状分布和全景影像的显著景深差异,导致控制点分布不均匀且相关性高,难以充分检校相机外方位元素,尤其是车辆横滚角和行驶方向上的平移分量。为解决这一问题,本文提出一种顾及深度信息的点线特征集成的高速公路场景移动测量系统全景相机自检校方法,该方法通过反距离加权提升平差模型对平移分量的灵敏度,提取公路设施上的点线特征,构建联合平差模型,减小深度差异对特征分布不均的影响,确保模型对各方向误差的高灵敏度。试验表明,本文方法能够准确检校全景相机的外方位元素误差,检校精度优于3像元,且检校模型对各方向的误差都有比较高的响应能力。

关键词: 全景相机自检校, 点线特征集成, 全景相机内方位元素检查, 移动测量系统

Abstract:

The onboard mobile mapping system is affected by pre-calibration errors, installation errors, and camera projection errors, leading to mismatches between the acquired point clouds and panoramic image sequence data. In highway scenarios, existing calibration methods face challenges due to the linear distribution of highways and the significant depth-of-field differences in panoramic images. These factors cause uneven distribution of control points with high correlation, making it difficult to adequately calibrate the camera's exterior orientation parameters, especially the translation components related to the vehicle's roll angle and travel direction. To address this issue, this paper proposes a self-calibration method for panoramic cameras in highway scenarios, integrating point-line features with depth information. The method improves the sensitivity of the adjustment model to translation components through inverse distance weighting, extracts point-line features from highway infrastructure, and constructs a joint adjustment model to reduce the impact of depth differences on uneven feature distribution, ensuring high sensitivity to errors in all directions. Experimental results show that the proposed method can accurately calibrate the exterior orientation parameters of the panoramic camera, with calibration accuracy better than 3 pixels, and the calibration model demonstrates high responsiveness to errors in all directions.

Key words: panoramic camera self-calibration, point-line feature integration, panoramic camera internal orientation elements self-check, mobile mapping system

中图分类号: