测绘学报 ›› 2025, Vol. 54 ›› Issue (6): 1042-1053.doi: 10.11947/j.AGCS.2025.20240185

• 海洋测绘 • 上一篇    下一篇

面向无现场控制的机载测深LiDAR安置角误差检校

宿殿鹏1,2(), 王斌1, 买小争3, 孟煌3, 亓超1,4(), 阳凡林1,5   

  1. 1.山东科技大学测绘与空间信息学院,山东 青岛 266590
    2.中国科学院上海光学精密机械研究所,上海 201800
    3.自然资源部第七地形测量队,海南 海口 570203
    4.自然资源部海底科学重点实验室,浙江 杭州 310012
    5.自然资源部海洋测绘重点实验室,山东 青岛 266590
  • 收稿日期:2024-04-28 修回日期:2025-05-05 出版日期:2025-07-14 发布日期:2025-07-14
  • 通讯作者: 亓超 E-mail:sudianpeng@126.com;qichoice007@sdust.edu.cn
  • 作者简介:宿殿鹏(1988—),男,博士,副教授,研究方向为水深测量和机载LiDAR测深数据处理。E-mail:sudianpeng@126.com
  • 基金资助:
    国家自然科学基金(42406186);中国博士后科学基金(2021M700155);青岛市关键技术攻关及产业化示范类项目(23-1-3-hygg-1-hy);青岛市自然科学基金(23-2-1-66-zyyd-jch);自然资源部渤海生态预警与保护修复重点实验室开放基金(2023107);山东省自然科学基金(ZR2023QD050);山东省高等教育青年创新科技计划(2023KJ088);自然资源部海底科学重点实验室开放基金(KLSG2306)

Calibration of placement angle errors of airborne bathymetric LiDAR without field control

Dianpeng SU1,2(), Bin WANG1, Xiaozheng MAI3, Huang MENG3, Chao QI1,4(), Fanlin YANG1,5   

  1. 1.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    2.Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
    3.The Seventh Topographic Surveying Bridge, Ministry of Natural Resources of China, Haikou 570203, China
    4.Key Laboratory of Submarine Geoscience, Ministry of Natural Resources, Hangzhou 310012, China
    5.Key Laboratory of Ocean Geomatics, Ministry of Natural Resources of China, Qingdao 266590, China
  • Received:2024-04-28 Revised:2025-05-05 Online:2025-07-14 Published:2025-07-14
  • Contact: Chao QI E-mail:sudianpeng@126.com;qichoice007@sdust.edu.cn
  • About author:SU Dianpeng (1988—), male, PhD, associate professor, majors in bathymetry survey and airborne LiDAR bathymetry processing. E-mail: sudianpeng@126.com
  • Supported by:
    The National Natural Science Foundation of China(42406186);China Postdoctoral Science Foundation(2021M700155);Key Technology Research and Industrialization Demonstration Project of Qingdao(23-1-3-hygg-1-hy);Qingdao Natural Science Foundation(23-2-1-66-zyyd-jch);Open Innovative Fund of Key Laboratory of Ecological Prewarning and Protection of Bohai Sea, Ministry of Natural Resource(2023107);Natural Science Foundation of Shandong Province(ZR2023QD050);Project of Shandong Province Higher Educational Youth Innovation·Science and Technology Program(2023KJ088);Open Innovative Fund of Key Laboratory of Submarine Geosciences, Ministry of Natural Resources(KLSG2306)

摘要:

机载LiDAR测深(ALB)系统可高效获取水上水下一体化地形数据,特别适合于浅水海岛礁等复杂地形的快速探测。然而,机载LiDAR测深过程中,由于激光测深雷达与惯性测量单元(IMU)之间产生的多传感器安置角误差,直接影响测深精度。针对海岸带等区域现场无检校控制点、测深雷达点云稀疏导致同名特征确定困难等问题,本文提出一种面向无现场控制的机载测深LiDAR安置角误差检校算法。首先,通过构建顾及同名角点距离差的光学零位误差检校模型,进行ALB系统内部码盘器件光学零位误差检校,为安置角检校奠定基础。然后,利用构建基于平面特征约束的安置角误差检校模型,结合随机采样一致性(random sample consensus,RANSAC)和最小二乘平差法,以单航带分层两平面距离最小为约束,进行俯仰角误差的检校;以双向航带两平面法向量夹角最小为约束,进行横滚角误差的检校;以双向航带特征房屋尖顶中心距离最小为约束,进行航向角误差的检校。为验证算法有效性,利用ALB系统Mapper 20KU试验数据进行精度评估。试验结果表明:陆地点精度的均方根误差(root mean square error,RMSE)为8.1 cm(与RTK测量陆地点对比),海底点测深精度(RMSE)为13.4 cm(与船载单波束测深点对比),满足《海洋工程地形测量规范》要求。本文算法能够有效减小ALB系统安置角误差,不仅可为机载LiDAR测深数据精细化处理提供技术支撑,还能够为海岸带等区域水下地形测量提供高精度数据,有利于促进海洋科学、海洋测绘等领域的相关研究和应用发展。

关键词: 机载LiDAR测深, ALB测深点位归算, 光学零位误差检校, 安置角误差检校

Abstract:

Airborne LiDAR bathymetry (ALB) system is highly effective in acquiring integrated topographic data both land and underwater, making them particularly suitable for rapid exploration of complex terrains such as shallow water islands and reefs. However, the presence of misalignment errors between the laser bathymetric radar and the inertial measurement unit (IMU) can lead to uncertainty in the water depth measurements obtained from the bathymetric process. Aiming at the problems that there are no calibration control points on site in coastal areas and the sparse bathymetric radar point cloud makes it difficult to identify the features with the same name, this paper proposes a calibration algorithm for the placement angle error of airborne bathymetric LiDAR without on-site control. Initially, by constructing an optical zero error correction model that considers the distance differences of corresponding corners, optical zero deviations of internal code devices in the ALB system are corrected, laying the groundwork for installation angle calibration. Subsequently, a calibration model for installation angle deviations is established based on plane feature constraints, combined with random sample consensus (RANSAC) and the least squares adjustment method. The pitch angle error is calibrated with the minimum distance between the two planes in a single flight strip as a constraint; the roll angle error is calibrated with the minimum angle between the normal vectors of the two planes in a two-way flight strip as a constraint; the heading angle error is calibrated with the minimum distance between the centers of the spires of the characteristic buildings in a two-way flight strip as a constraint. Two ALB dataset captured from Mapper 20KU are utilized to verify effectiveness. Experimental results demonstrate that the root mean square errors (RMSE) of land points (compared to RTK-measured land points) and seabed points (compared to single-beam shipborne depth measurements) accuracy are 8.1 cm and 13.4 cm, respectively. The bathymetric result can satisfy the requirements of the “Marine Engineering Topographic Survey Specifications”. The proposed method can effectively reduce installation angle deviations of ALB, not only providing technical support for the refined processing of airborne LiDAR bathymetry data but also offering high-precision data for underwater topographic measurements in coastal areas. Consequently, this work promotes research and application development in marine science and hydrographic surveying fields.

Key words: airborne LiDAR bathymetry, ALB bathymetric point position recalculation, optical zero error calibration, installation angle error calibration

中图分类号: