| [1] |
GHAFFARI-RAZIN S R, RASTBOOD A, HOOSHANGI N, et al. Regional application of generalized regression neural network in ionosphere spatio-temporal modeling and forecasting[J]. GPS Solutions, 2023, 27(1): 51.
|
| [2] |
LI Wang, ZHU Haoze, SHI Shuangshuang, et al. Modeling China's Sichuan-Yunnan's ionosphere based on multichannel WOA-CNN-LSTM algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5705018.
|
| [3] |
张小红, 任晓东, 吴风波, 等. 自回归移动平均模型的电离层总电子含量短期预报[J]. 测绘学报, 2014, 43(2): 118-124.
|
|
ZHANG Xiaohong, REN Xiaodong, WU Fengbo, et al. Short-term TEC prediction of ionosphere based on ARIMA model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 118-124.
|
| [4] |
AGGARWAL M, JOSHI H P, IYER K N. Day-to-day variability of equatorial anomaly in GPS-TEC during low solar activity period[J]. Advances in Space Research, 2012, 49(12): 1709-1720.
|
| [5] |
ZHANG Xiao, ZHANG Baocheng, YUAN Yunbin, et al. A refined carrier-to-code levelling method for retrieving ionospheric measurements from dual-frequency GPS data[J]. Measurement Science and Technology, 2020, 31(3): 035010.
|
| [6] |
WANG Y, JAYACHANDRAN P T, MA Y Z, et al. Dependencies of GPS scintillation indices on the ionospheric plasma drift and rate of change of TEC around the dawn sector of the polar ionosphere[J]. Journal of Geophysical Research: space Physics, 2022, 127(11): e2022JA030870.
|
| [7] |
XU Fei, YUE Dongjie, ZHAI Changzhi, et al. Assessing the role of space weather indices in the prediction of total electron content at different latitudes during geomagnetic storms[J]. Astrophysics and Space Science, 2025, 370(3): 32.
|
| [8] |
DONG Yanfeng, GAO Chengfa, LONG Fengyang, et al. Enhanced neural network model for regional ionospheric modeling and evaluation under different solar-geomagnetic conditions[J]. Measurement Science and Technology, 2023, 34(3): 035801.
|
| [9] |
XU Lei, GAO Jingxiang, LI Zengke, et al. A new flexible model to calibrate single-layer height for ionospheric modeling using a neural network model[J]. GPS Solutions, 2023, 27(3): 106.
|
| [10] |
LIN Yang, FANG Hanxian, DUAN Die, et al. Multi-model assessment of PCA-informer hybrid model against empirical and deep learning methods in TEC forecasting[J]. Space Weather, 2025, 23(4): e2024SW004018.
|
| [11] |
LEI Dongxing, LIU Haijun, LE Huijun, et al. Ionospheric TEC prediction base on attentional BiGRU[J]. Atmosphere, 2022, 13(7): 1039.
|
| [12] |
LIU Haijun, WANG Haoran, YUAN Jing, et al. TEC prediction based on Att-CNN-BiLSTM[J]. IEEE Access, 2024, 12: 68471-68484.
|
| [13] |
XUE Kaiyu, SHI Chuang, WANG Cheng. RA-ConvLSTM: recurrent-architecture attentional ConvLSTM networks for prediction of global total electron content[J]. Space Weather, 2025, 23(2): e2024SW004173.
|
| [14] |
蒋磊, 孙蕊, 刘正午, 等. 基于GA-BP的中欧GNSS电离层误差建模与精度分析[J]. 北京航空航天大学学报, 2023, 49(6): 1533-1542.
|
|
JIANG Lei, SUN Rui, LIU Zhengwu, et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1533-1542.
|
| [15] |
刘立龙, 陈军, 黄良珂, 等. 基于Holt指数平滑模型的Klobuchar模型精化[J]. 武汉大学学报(信息科学版), 2018, 43(4): 599-604.
|
|
LIU Lilong, CHEN Jun, HUANG Liangke, et al. A sophisticated Klobuchar model based on the Holt exponential smoothing model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 599-604.
|
| [16] |
王喜江, 边少锋, 李子申, 等. 利用半参数核估计法预报全球电离层总电子含量[J]. 地球物理学报, 2020, 63(4): 1271-1281.
|
|
WANG Xijiang, BIAN Shaofeng, LI Zishen, et al. Prediction of global ionospheric TEC using the semiparametric kernel estimation method[J]. Chinese Journal of Geophysics, 2020, 63(4): 1271-1281.
|
| [17] |
LI Shuhui, ZHOU Houxiang, XU Jiajia, et al. Modeling and analysis of ionosphere TEC over China and adjacent areas based on EOF method[J]. Advances in Space Research, 2019, 64(2): 400-414.
|
| [18] |
NATH S, CHETIA B, KALITA S. Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India[J]. Advances in Space Research, 2023, 71(5): 2307-2317.
|
| [19] |
DABBAKUTI J R K K, PEESAPATI R, PANDA S K, et al. Modeling and analysis of ionospheric TEC variability from GPS-TEC measurements using SSA model during 24th solar cycle[J]. Acta Astronautica, 2021, 178: 24-35.
|
| [20] |
KHANLI L M, MAHAN F, ISAZADEH A. Active rule learning using decision tree for resource management in grid computing[J]. Future Generation Computer Systems, 2011, 27(6): 703-710.
|
| [21] |
LIU Yonggang, LIU Junjun, ZHANG Yuanjian, et al. Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization[J]. Energy, 2020, 207: 118212.
|
| [22] |
FARISON F, LIMA-CAMPÊLO V R, PARADIS M, et al. Farmers who implemented this, also implemented that: use of association-rule-learning to improve biosecurity on dairies[J]. Preventive Veterinary Medicine, 2025, 239: 106516.
|
| [23] |
张道胜, 蒙祖强. 基于RL-Net改进的可解释规则学习方法[J]. 计算机工程与应用, 2025, 61(18): 157-165.
|
|
ZHANG Daosheng, MENG Zuqiang. An improved learning method of interpretable rules based on RL-Net[J]. Computer Engineering and Applications, 2025, 61(18): 157-165.
|
| [24] |
PARK S, YOON H, KIM B, et al. FAGA: feedback-aided greedy algorithm for periodic messages in LTE V2V communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 11062-11068.
|
| [25] |
罗小敏, 曹光胤, 潘雄, 等. 联合半参数和长短期记忆神经网络的全球电离层TEC短期预报[J]. 地球物理学报, 2023, 66(5): 1807-1819.
|
|
LUO Xiaomin, CAO Guangyin, PAN Xiong, et al. Global ionospheric TEC short-term prediction by combing semiparametric and long-short term memory networks method[J]. Chinese Journal of Geophysics, 2023, 66(5): 1807-1819.
|
| [26] |
闵继源, 鲁统宇, 任婷婷, 等. 基于规则集成的可解释机器学习算法及应用[J]. 计算机科学与探索, 2024, 18(6): 1476-1490.
|
|
MIN Jiyuan, LU Tongyu, REN Tingting, et al. Interpretable machine learning algorithm based on rules ensemble and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1476-1490.
|
| [27] |
ESPOSITO F, MALERBA D, SEMERARO G, et al. A comparative analysis of methods for pruning decision trees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5): 476-491.
|
| [28] |
KNUTH D E. The art of computer programming[M]. 3rd ed. Massachusetts: Addison-Wesley, 1997.
|