测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 2068-2080.doi: 10.11947/j.AGCS.2025.20250149

• 地图学与地理信息 • 上一篇    

高速公路广告牌巡检目标跟踪的改进ByteTrack算法

李俊1,2(), 李朝奎1(), 黄磊3, 冯媛媛1,2   

  1. 1.湖南科技大学测绘遥感信息工程湖南省重点实验室,湖南 湘潭 411201
    2.湖南科技大学地球科学与空间信息工程学院,湖南 湘潭 411201
    3.湖南省第一测绘院,湖南 长沙 410004
  • 收稿日期:2025-04-07 修回日期:2025-11-05 发布日期:2025-12-15
  • 通讯作者: 李朝奎 E-mail:1576747472@qq.com;616059644@qq.com
  • 作者简介:李俊(2000—),男,硕士生,研究方向为地图制图学与地理信息工程。E-mail:1576747472@qq.com
  • 基金资助:
    国家自然科学基金(42171418);实景三维建设与应用技术湖南省工程研究中心开放课题(3DRS2024H3);实景三维地理环境安徽省重点实验室开放课题(2024PGE001);湖南省自然科学基金(2024JJ8328)

Highway billboard inspection object tracking based on improved ByteTrack algorithm

Jun LI1,2(), Chaokui LI1(), Lei HUANG3, Yuanyuan FENG1,2   

  1. 1.Hunan Key Laboratory of Surveying, Mapping and Remote Sensing Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    2.College of Geoscience and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    3.The First Surveying and Mapping Institute of Hunan Province, Changsha 410004, China
  • Received:2025-04-07 Revised:2025-11-05 Published:2025-12-15
  • Contact: Chaokui LI E-mail:1576747472@qq.com;616059644@qq.com
  • About author:LI Jun (2000—), male, postgraduate, majors in cartography and geographic information engineering. E-mail: 1576747472@qq.com
  • Supported by:
    The National Natural Science Foundation of China(42171418);Real 3D Construction and Application Technology Hunan Engineering Research Center Open Project(3DRS2024H3);Open Project of Anhui Provincial Key Laboratory of Real 3D Geographic Environment(2024PGE001);Hunan Provincial Natural Science Foundation Project(2024JJ8328)

摘要:

采用ByteTrack算法对高速公路巡检车摄像头捕捉到的广告牌进行跟踪,能够提取广告牌视频画面、出现时间节点信息。然而该算法面临着遮挡问题及误跟踪非广告牌目标的挑战,为此,对ByteTrack算法作出以下改进研究。首先,在目标被标识为跟踪ID前需创建缓冲轨迹,直至此轨迹满足预激活判定条件,对处于丢失状态的目标轨迹判断遮挡状态,当预激活目标与遮挡目标符合类别、外观及方位向量等条件时,进行两目标之间的匈牙利匹配;然后,参考Botsort、ByteTrack算法中卡尔曼滤波参数设置特点,使用遗传算法分别对XYAH、XYWH编码方式下卡尔曼滤波关键参数进行调节,对比选择预测效果最佳的卡尔曼滤波。本文以长株潭城市群部分高速公路为试验对象,研究结果表明,相较于原始ByteTrack算法,本文方法的Hota、Mota、IDF指标分别提高了1.318、11.682、2.033个百分比;对比其他的多目标跟踪算法,改进的ByteTrack算法除了FP值略高于Ocsort算法,其他各个指标都优于Botsort、Deepocsort、Hybridsort等算法。改进的ByteTrack算法实现了高速公路广告牌目标的良好跟踪,为高速公路广告牌智能巡检技术提供了参考。

关键词: 高速公路, 巡检车, 广告牌, ByteTrack, 多目标跟踪

Abstract:

The ByteTrack algorithm is used to track the billboards captured by the camera of the highway inspection vehicle, which can extract the video screen of the billboard and the information of the time node. However, the algorithm faces the challenge of occlusion and false tracking of non-advertisement objects. Therefore, the following improvements are made to the ByteTrack algorithm. Firstly, a buffer trajectory needs to be created before the object is identified as the tracking ID until the trajectory satisfies the pre-activation criterion. The occlusion state is judged for the object trajectory in the lost state. When the pre-activated object and the occluded object meet the category, appearance and orientation vector conditions, the Hungarian matching between the two objects is performed. Secondly, referring to the characteristics of Kalman filter parameter setting in Botsort and ByteTrack algorithms, genetic algorithm is used to adjust the key parameters of Kalman filter under XYAH and XYWH coding modes respectively, and the Kalman filter with the best prediction effect is selected. Some expressways in Changsha-Zhuzhou-Xiangtan urban agglomeration are selected as experimental objects. The results show that compared with the original ByteTrack algorithm, the proposed method improves the Hota, Mota and IDF indexes by 1.318%, 11.682% and 2.033%, respectively. Compared with other multi-object tracking algorithms, the improved ByteTrack algorithm is superior to Botsort, Deepocsort, Hybridsort and other algorithms except that the FP value is slightly higher than the Ocsort algorithm. The improved ByteTrack algorithm achieves good tracking of object on highway billboards, which provides a reference for the intelligent inspection technology of highway billboards.

Key words: highway, inspection vehicle, billboard, ByteTrack, multi-object tracking

中图分类号: