测绘学报

• 学术论文 • 上一篇    下一篇

基于Contourlet域HMT和D-S证据理论的SAR图像融合分割

吴艳1,焦惊眉2,杨晓丽3,肖平2,李明3   

  1. 1. 西安电子科技大学 电子工程学院
    2. 陕西省测绘局
    3. 西安电子科技大学
  • 收稿日期:2010-02-01 修回日期:2010-05-10 出版日期:2011-04-25 发布日期:2011-04-25
  • 通讯作者: 吴艳

Fusion Segmentation Algorithm for SAR images based on HMT in Contourlet Domain and D-S theory of evidence

  • Received:2010-02-01 Revised:2010-05-10 Online:2011-04-25 Published:2011-04-25

摘要: 摘要:基于Contourlet的多尺度、局部化、方向性和各向异性等优点,结合隐马尔科夫树模型(Hidden Mark Tree,HMT)和D-S(Dempster-Shafer)论证推理,本文提出了一种新的SAR图像分割算法。该算法把隐马尔科夫树模型推广到Contourlet域,在多尺度HMT和D-S证据理论的基础上融合Contourlet系数的持续性和聚集性,导出了融合后的最大后验多尺度分割公式。本文对实测SAR图像进行了仿真,仿真结果和分析表明:与小波域上的HMT-MRF(Markov Random Field,MRF)融合分割及Contourlet域上HMT和MRF分割算法相比,本文算法在抑制斑点噪声的同时,有效地提高了SAR图像的分割精度。

Abstract: Abstract: Utilizing the contourlet’s advantages of multiscale ,localization, directionality and anisotropy, a new SAR image segmentation algorithm based on hidden markov tree (HMT) in contourlet domain and dempster-shafer theory of evidence is proposed in this paper. The algorithm extends the hidden markov tree framework to contourlet domain and fuses the clustering and persistence of contourlet transform using HMT model and D-S theory, and then, we deduce the maximum a posterior (MAP) segmentation equation for the new fusion model. The algorithm is used to segment the real SAR images. Experimental results and analysis show that the proposed algorithm effectively reduces the influence of multiplicative, improves the segmentation accuracy and provides a better visual quality for SAR images over the algorithms based on HMT-MRF in the wavelet domain, HMT and MRF in the Contourlet domain, respectively.