测绘学报

• 学术论文 • 上一篇    下一篇

基于半监督核模糊C-均值算法的北京一号小卫星多光谱图像分类

刘小芳1,何彬彬2,李小文3   

  1. 1. 四川理工学院
    2. 电子科技大学
    3. 电子科技大学;北京师范大学
  • 收稿日期:2010-01-05 修回日期:2010-08-12 出版日期:2011-06-25 发布日期:2011-06-25
  • 通讯作者: 刘小芳

Classification for Beijing-1 Micro-Satellite’s Multispectral Image Based on Semi-Supervised Kernel FCM Algorithm

  1. 1.
    2. University of Electronic Science and Technology of China
  • Received:2010-01-05 Revised:2010-08-12 Online:2011-06-25 Published:2011-06-25

摘要: 针对遥感图像数据大多不服从高斯分布,以及遥感图像分类存在非线性、模糊性和标签数据少等问题,提出基于半监督核模糊C-均值算法的多光谱遥感图像分类方法。首先,把半监督学习理论和核理论同时引入模糊C-均值算法,形成半监督核模糊C-均值算法。然后用该算法和几种传统的分类方法对北京一号小卫星多光谱图像进行分类实验。最后,对其分类结果进行对比评价。结果表明,对比传统的分类法(K-均值算法和最大似然算法),半监督核模糊C-均值算法能显著提高分类精度,其分类性能也优于模糊C-均值算法、核模糊C-均值算法和半监督模糊C-均值算法。

Abstract: Aim at these problems of most of remote sensing image data don’t submit to gauss distribution, as well as remote sensing image classification exists the nonlinear, fuzzy and few labeled data, a semi-supervised kernel-based fuzzy C-means (SSKFCM) algorithm is proposed for classification of multispectral remote sensing image. First, the SSKFCM algorithm is presented by introducing simultaneously semi-supervised learning technique and kernel method into conventional fuzzy C-means (FCM) algorithm. Then, the experiments of the SSKFCM algorithm and a few conventional classification methods are implemented to test the properties of classification results for Beijing-1 micro-satellite’s multispectral image. Finally, the classification performance is estimated by corresponding indexes. The results show that the SSKFCM algorithm improves significantly classification accuracy compared with conventional classifiers (K-means algorithm and maximum likelihood algorithm). Also, it outperforms the FCM algorithm, the KFCM algorithm and the SSFCM algorithm.