测绘学报

• 学术论文 • 上一篇    下一篇

顾及地形因素的卡尔曼滤波相位解缠算法

刘国林1,郝华东2,闫满2,陶秋香   

  • 收稿日期:2010-01-27 修回日期:2010-07-04 出版日期:2011-06-25 发布日期:2011-06-25
  • 通讯作者: 闫满

Kalman Filter Phase Unwrapping Algorithm Based on Topographic Factors

  • Received:2010-01-27 Revised:2010-07-04 Online:2011-06-25 Published:2011-06-25

摘要: 相位解缠是InSAR进行数字高程模型提取和差分干涉测量中的关键步骤。针对现有的卡尔曼滤波相位解缠算法在地形陡峭或坡度较大时解缠结果有较大的误差传递这一情况,论文提出一种顾及地形因素的卡尔曼滤波相位解缠算法。该算法通过在卡尔曼滤波的状态空间模型中引入一与地形因素相关的输入控制变量来实现。由于干涉条纹直接反映了地形的变化起伏,局部条纹频率与局部地形坡度密切相关,考虑采用局部条纹频率估计作为输入控制变量。在局部频率估计中,采用二维Chirp-Z变换,可以快速地得到较准确的估计结果。分别采用仿真数据以及InSAR实际数据进行了实验,通过与常规卡尔曼滤波相位解缠算法比较与分析,获得可靠的解缠结果,验证了论文提出的算法能够有效地处理地形陡峭或坡度较大的情况。

Abstract: Phase unwrapping is the key step in Digital Elevation Model extraction and Differential Interferometry of Interferometric Synthetic Aperture Radar (InSAR). When the terrain is steep or slope is larger, the unwrapping result is bad and causes error transmission using the existing Kalman Filter phase unwrapping algorithm. Considering this situation, this paper presents a Kalman Filter phase unwrapping algorithm based on topographic factors for InSAR. It can be implemented through the introduction of the input control variable associated with topographic factors to the state-space model of Kalman Filter. Owing to the fact that the interference fringes directly reflect the change of the terrain and local fringe frequency is closely related with the local terrain slope, we can use the local fringe frequency estimation as the input control variable. In the local frequency estimation, using two-dimensional Chirp-Z transform, we can quickly get better estimate of the results. In this paper, using simulated data and real InSAR data to do the experiment and compared with the conventional Kalman filter phase unwrapping algorithm, it can gain more reliable unwrapping result. It is verified that the proposed algorithm can effectively deal with the situation of steep terrain and larger slope.