测绘学报

• 学术论文 • 上一篇    下一篇

基于SUT-EKF的DGPS/DR组合定位算法

石杏喜1,王铁生2,黄波3,赵春霞3   

  1. 1. 南京理工大学计算机科学与技术学院;南京理工大学理学院;
    2. 华北水利水电学院
    3. 南京理工大学计算机科学与技术学院
  • 收稿日期:2009-08-05 修回日期:2010-04-27 出版日期:2010-10-25 发布日期:2010-10-25
  • 通讯作者: 石杏喜

Integrated Localization Algorithm for DGPS/DR Based on SUT-EKF

  • Received:2009-08-05 Revised:2010-04-27 Online:2010-10-25 Published:2010-10-25

摘要: 针对基于DGPS/DR的移动机器人组合定位问题,采用一种尺度无迹变换扩展卡尔曼滤波(SUT-EKF)算法,由于组合定位系统中的状态方程是非线性的,并且观测方程是线性的特点,将SUT预测移动机器人位姿,利用EKF融合最新观测值更新机器人位姿,该算法在状态预测阶段避免了计算Jacobian矩阵,从而有效地减小了线性化对非线性系统误差的影响。仿真结果表明,该算法具有较好的滤波精度和稳定性,为实现DGPS/DR组合定位系统提供了一种有效可靠的途径。

Abstract: Aiming at the integrated localization issue for mobile robot based on DGPS/DR, an algorithm based on scale unscented transformation and extended kalman filter (SUT-EKF) is used. For the characteristic of nonlinear state equation and linear measurement equation, the robot location can be predicted by SUT and can be updated with new observations by EKF. The algorithm doesn’t compute the Jacobian matrix, it can decrease effectively the error of nonlinear system brought by the linearization. Simulation results show that the new algorithm has better filtering precision and stability and provide an effective approach for the integrated localization system based on DGPS/DR.