测绘学报

• 学术论文 • 上一篇    下一篇

卫星重力径向梯度数据的最小二乘配置调和分析

吴星1,张传定2,刘晓刚2   

  1. 1. 总装备部工程设计研究总院
    2. 信息工程大学测绘学院
  • 收稿日期:2009-07-16 修回日期:2010-03-02 出版日期:2010-10-25 发布日期:2010-10-25
  • 通讯作者: 吴星

Least-squares Collocation Harmonic Analysis of the Radial Satellite Gravity Gradients

  • Received:2009-07-16 Revised:2010-03-02 Online:2010-10-25 Published:2010-10-25

摘要: 本文深入研究了利用卫星重力梯度径向分量确定地球引力场位系数的最小二乘配置(LSC)调和分析方法。首先论述了最小二乘配置法的原理,推导了扰动引力梯度观测量与球谐系数之间的协方差和自协方差矩阵,在扰动引力梯度观测数据为等经差规则网格数据的情况下,引力位与扰动引力梯度之间的协方差矩阵具有分块Toeplitz循环阵的结构,有效的利用FFT变换技术将其降阶;研究利用截断奇异值分解法(TSVD)解决协方差阵的病态性问题;最后得到了引力梯度径向分量的最小二乘配置调和分析的完整计算公式。模拟试算结果表明,基于TSVD的最小二乘配置调和分析方法,能够以较高的精度还原全球重力场,验证了本文算法的有效性和实用性。

Abstract: The least-squares collocation harmonic analysis method, which is used to determine the earth geopotential coefficients from the radial satellite gravity gradient, is deeply studied. The principle of the least-squares collocation is firstly dissertated, and the covariance and self-covariance matrix between the disturbing gravity gradients and spherical harmonics are derived. When the disturbing gravity gradients are in the regularized equi-longitude grid, the covariance matrix between geopotential and disturbing gravity gradients has the configuration of blocked Toeplitz circulation matrix, and its degree can be lowered by using the fast Fourier transform technology effectively. Truncated singular value decomposition (TSVD) which is used to solve the ill-posed problem of covariance matrix is studied. The complete formula of least-squares collocation harmonic analysis of the radial gravity gradient is finally obtained. The simulation experiment results show that the least-squares collocation harmonic analysis based on TSVD can recover the global gravity field in a rather high precision and validity and practicability of algorithms in this paper are also testified.