测绘学报

• •    

一种扩展SURF描述符及其在遥感图像配准中的应用

罗楠1,孙权森1,耿蕾蕾1,李辉2,夏德深1   

  1. 1. 南京理工大学
    2. 南京理工大学计算机科学与技术学院
  • 收稿日期:2011-11-29 修回日期:2012-04-24 发布日期:2013-04-25
  • 通讯作者: 罗楠
  • 基金资助:
    未定;863计划专题课题;中国极地科学战略研究基金

An Extended SURF Descriptor and Its Application of Remote Sensing Images Registration

  • Received:2011-11-29 Revised:2012-04-24 Published:2013-04-25
  • Supported by:
    weiding

摘要: 本文针对原有的经典算法存在着运算时间过长或者匹配正确率不高的情况,提出一种扩展的SURF描述符。在原始SURF描述符的基础上,通过计算特征点相应尺度上的邻域采样点的局部归一化灰度统计信息以及二阶梯度值细节信息,形成新的扩展描述符。该方法不但能传承SURF算法速度快的优良性能,还能充分利用图像的灰度信息和细节信息。通过实验表明,综合考虑算法运行效率与匹配正确率,本文算法较原有经典算法更具鲁棒性。

关键词: 图像特征匹配, 加速稳健特征, 遥感图像处理, 局部归一化, 扩展的特征描述符, Image features matching, Speed up robust features, Remote sensing image processing, Local normalization, Extended feature descriptor

Abstract: To solve the classical methods’ problems of long executing time or low accuracy, this paper proposes an extended SURF descriptor. On the method using SURF, the proposed method uses local normalization information and second-order gradient values of neighborhood regions to build a new one. Not only does this method perform as fast as SURF algorithm, but it also fully employs the image grayscale information and details. Considering the executing time and rate, experimental results presented in this paper show that the proposed method is more robust than classical methods.