[1] MARTINEC Z. Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains [J]. Journal of Geodesy, 1996, 70: 805-828.[2] VANíCEK P, SUN W, ONG P, et al. Downward continuation of Helmert’s gravity [J]. Journal of Geodesy, 1996, 71: 21-34.[3] SUN W, VANíCEK P. On some problems of the downward continuation of the 5′×5′ mean Helmert gravity disturbance [J]. Journal of Geodesy, 1998, 72: 411-420.[4] WANG Xingtao, SHI Pan, ZHU Feizhou. Regularization Methods and Spectral Decomposition for the Downward Continuation of Airborne Gravity Data [J]. Acta Geodaetica et Cartographica Sinica, 2004, 33 (1): 33-38.(王兴涛,石磐,朱非洲. 航空重力测量数据向下延拓的正则化算法及其谱分解 [J]. 测绘学报, 2004, 33 (1): 33-38.)[5] GU Yongwei, GUI Qingming. Study of regularization based on signal to noise index in Airborne Gravity Downward to the Earth Surface [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39 (5): 458-464.(顾勇为, 归庆明. 航空重力测量数据向下延拓基于信噪比的正则化方法的研究 [J]. 测绘学报, 2010, 39 (5): 458-464.)[6] JIANG Tao, LI Jiancheng, WANG Zhengtao, et al. The solution of ill-posed problem in downward continuation of airborne gravity [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40 (6): 684-689.(蒋涛, 李建成, 王正涛等. 航空重力向下延拓病态问题的求解 [J]. 测绘学报, 2011, 40(6): 684-689. )[7] DENG Kailiang, HUANG Motao and BAO Jingyang, et al. Tikhonov two-parameter regularization algorithm in downward continuation of airborne gravity data [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40 (6): 690-696.(邓凯亮,黄谟涛, 暴景阳等. 向下延拓航空重力数据的Tikhonov双参数正则化法 [J]. 测绘学报, 2011, 40 (6): 690-696.)[8] FORSBERG R, KENYON S. Evaluation and downward continuation of airborne gravity data—the Greenland example [C]. In: Proc Int Symp Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, 1994. 531-538.[9] BáLHA T, HIRSCH M, KELLER W, et al. Application of a spherical FFT approach in airborne Gravimetry [J]. Journal of Geodesy, 1996, 70: 663-672.[10] HWANG C, HSIAO Y, SHIH H, et al. Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment [J]. J. Geophys. Res., 2007, 112, B04407, doi: 10.1029/2005JB004220.[11] SHI Pan, WANG Xingtao. The frequence domain analysis for the determination of terrestrial mean gravity anomaly using airborne gravimetry [J]. Acta Geodaetica et Cartographica Sinica, 1995, 24 (4): 301-308.(石磐, 王兴涛. 空中测量地面平均重力异常的频域分析 [J]. 测绘学报, 1995, 24 (4): 301-308.)[12] SHI Pan, SUN Zhongmiao. The solution to the problem of the spherical interior Dirichlet and its application [J]. Acta Geodaetica et Cartographica Sinica, 1999, 28 (3): 195-198.(石磐,孙中苗. 球内Dirichlet问题解及其应用 [J]. 测绘学报, 1999, 28 (3): 195-198.)[13] NOVáK P, HECK B. Downward continuation and geoid determination based on band-limited airborne gravity data [J]. Journal of Geodesy, 2002, 76: 269-278.[14] ALLDREDGE L R. Rectangular harmonic analysis applied to the geomagnetic field [J]. Journal of Geophysical Research, 1981, 86( B4 ) :3021- 3026.[15] LI Mingming, HUANG Xianlin, LU Hongqian, et al. Modeling of High Accuracy Local Geomagnetic Field Base on Rectangular Harmonic Analysis [J]. Journal of Astronautics, 2010, 31 (7): 1730-1736.(李明明, 黄显林, 卢鸿谦, 尹航. 基于矩谐分析的高精度局部地磁场建模研究 [J]. 宇航学报, 2010, 31 (7): 1730-1736.)[16] BIAN Shaofeng. Numerical solution for geodetic boundary value problem and the Earth`s gravity field approximation [D]. Wuhan: Wuhan Technical University of Surveying and Mapping, 1992.(边少锋. 大地测量边值问题数值解法和地球重力场逼近 [D]. 武汉测绘科技大学,1992.)[17] PAVLIS N K, HOLMES A, KENYON S C, et al. An Earth gravitational model to degree 2160: EGM08 [C]. Presented at the 2008 General Assembly of the European Geoscience Union, Vienna, Austria, 2008.[18] JIANG Tao. Regioanl geoid determination using airborne gravimetry data [D]. Wuhan: Wuhan University, 2011.(蒋涛. 利用航空重力测量数据确定区域大地水准面 [D]. 武汉大学,2011.)[19] KUSCHE J and KLEES R. Regularization of gravity field estimation from satellite gravity gradients [J]. Journal of Geodesy, 2002, 76: 359-368.[20] BRUINSMA S L, MARTY J C, BALMINO G, et al. GOCE Gravity Field Recovery by Means of the Direct Numerical Method [C]. Presented at the ESA Living Planet Symposium, Bergen, Norway, 27th June - 2nd July 2010. |