测绘学报 ›› 2014, Vol. 43 ›› Issue (7): 761-770.

• 学术论文 • 上一篇    

采用案例类比推理进行道路网智能选取

郭敏1,钱海忠2,黄智深1,何海威1,刘海龙3   

  1. 1. 信息工程大学
    2. 信息工程大学地理空间信息学院
    3. 信息工程大学测绘学院
  • 收稿日期:2013-12-11 修回日期:2014-04-22 出版日期:2014-07-20 发布日期:2014-07-29
  • 通讯作者: 钱海忠 E-mail:qianhaizhong2005@163.com
  • 基金资助:

    基于城市骨架线网的同名实体关联关系构建原理与方法;自动制图综合及其过程控制的智能化研究

Intelligent Road-network Selection using Cases Based Reasoning

  • Received:2013-12-11 Revised:2014-04-22 Online:2014-07-20 Published:2014-07-29

摘要:

自动制图综合的智能化研究因受人类复杂思维制约,长期以来成为研究的薄弱环节。从人类学习和认知角度,借鉴人工智能领域基于案例推理学习的成果,提出一种基于案例类比推理的道路网智能选取新方法。该方法将制图专家对某区域道路网的交互选取结果作为参考标准,对其进行结构化描述并构建和转化为案例库;计算机采用一定的简化算法和泛化算法对该案例库进行分析和学习,获取检索效率更高和适应样本能力更强的案例模型库;计算机在对相似道路网自动选取时,根据获取的案例模型库,采用基于案例类比推理的方法,分析获取相应的解决方案,进而完成道路网智能选取。与已有研究成果相比,本方法以案例及其泛化模型来模拟专家思维,以计算机对案例模型的类比学习来进行相似道路网自动选取,弥补了传统道路网选取中智能性差的缺陷,为自动综合智能化研究找到了一条可行途径。论文最后对本方法的科学性和适用性进行了验证,并对实验结果做了分析和评价,同时指出了存在问题和进一步研究方向。

关键词: 道路网, 案例, 案例模型库, 类比推理, 智能选取

Abstract:

The developing of intelligent automated generalization has been a challenging problem to be solved because of the complex thinking of human beings. A new approach of intelligent road-network selection using cases based reasoning (CBR) was put forward in this paper. In this approach, learning and cognition techniques of human being in artificial intelligence were used to establish, learn and reason the cases of cartographers. First, it took a certain area’s road-network selection result achieved from interactive selection of cartographic experts as reference templates, and transformed the templates into selection cases after establishing the description structure of cases. Second, the cases were analyzed and reasoned with enhanced simplifying and generalizing methods so as to get more effective case model base. Finally, the computer finished the similar road selection using CBR technique supported with the enhanced case model base. Compared with the past algorithms, the new approach uses enhanced road selection cases to simulate the thinking of human being, and CBR model to select similar road-work intelligently, which fetches up the shortcoming of intelligence of traditional road selection methods, and creates a new embranchment in the field of intelligent automated generalization. Examples and related analyzing and assessing results illustrate the scientificity and usability of the new approach. And further works to be improved are also suggested at the end of this paper.

Key words: road-network, case, case model base, case based reasoning (CBR), intelligent road-network selection

中图分类号: