[1] Fang X.Weighted Total Least Squares Solution for Application in Geodesy[D]. Leibniz University Hanover, Germany Nr 294, 2011
[2] Van Huffel S, Vandewalle J.The Total least –squares problem. Computational aspects and analysis[M], Society for Industrial and Applied Mathematics, Philadelphia, 1991
[3] Fang X.A structured and constrained total least-squares solution with cross-covariances[J]. Stud Geophys Geod, 2014, 57: in press
[4]Bleich P, Illner M.Strenge L?sung der r?umlichen Koordinatentransformation durch iterative Berechnung[J].AVN, 1989, 96(4):133-144
[5] Pope A.Some pitfalls to be avoided in the iterative adjustment of nonlinear problems[R]. Proc 38th Ann Meet Am Soc Phot, Waschington, DC, 1972: 449-473
[6] Acard A, ?ylüdemir MT, Alkilmay O, Celik RN, Ayan T.Deformation analysis with total least squares[J]. Nat. Hazards Earth Syst. Sci, 2006, 6: 663-669
[7]Felus F, Burtch R.On symmetrical three-dimensional datum conversion[J].GPS Solutions, 2009, 13(1):65-74
[8] Akyilmaz O.Solution of the heteroscedastic datum transfomation problem[R]. In: Kutterer H, Seitz F: The 1st International Workshop on The Quality of Geodetic Observation and Monitoring Systems, Munich, Germany, Springer, Berlin. 2012
[9] Lu J, Chen Y, Fang X, Zheng B.Performing 3-D similarity transformation using the weighted total least-squares method[R]. In: Kutterer H, Seitz F: The 1st International Workshop on The Quality of Geodetic Observation and Monitoring Systems, Munich, Germany, Springer, Berlin, 2012
[10] Neitzel F.Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation[J]. Journal of Geodesy, 2010, 84:751-762
[11]陆珏, 陈义, 郑波.总体最小二乘方法在三维坐标转换中的应用[J].大地测量与地球动力学, 2008, 28(5):77-81
[12]许超钤,姚宜斌,熊思婷,熊绍龙.三维任意旋转角度坐标转换的整体最小二乘回归解法[J].测绘信息与工程, 2010, 35(5):46-48
[13]Xu PL, Liu JN, Shi C.Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis[J].Journal of Geodesy, 2012, 86(8):661-675
[14]Fang X.Weighted Total Least Squares: necessary and sufficient conditions,fixed and random parameters[J].Journal of Geodesy, 2013, 87(8):733-749
[15]葛旭明,伍吉仓.三维基准转换的约束加权混合整体最小二乘的迭代解法[J].武汉大学学报.信息科学版, 2012, 37(2):178-182
[16] Nocedal J, Wright S.Numerical optimization[M], Springer, 2006
[17] Lenzmann L, Lenzmann E.Zur L?sung des nichtlinearen Gauss-Markov-Modells[J]. ZfV, 2007, 132: 108-120 (in German)
[18]孔建, 姚宜斌, 吴寒.整体最小二乘的迭代解法[J].武汉大学?信息科学版, 2010, 35(6):711-714
[19]Schaffrin B, Felus Y A.On the multivariate total least-squares approach to empirical coordinate transformations: Three algorithms[J].J Geod, 2008, 82(6):373-383
[20] Cai J Q, Grafarend E W.Systematical analysis of the transformation between Gauss-Krueger-Coordinate/DHDN and UTM-Coordinate/ETRS89 in Baden-Württemberg with different estimation methods[J]. Geod Refer Fram Inte Asso of Geod Sym 2009, 134:205-211 |