测绘学报 ›› 2015, Vol. 44 ›› Issue (2): 190-197.doi: 10.11947/j.AGCS.2015.20130439

• 摄影测量学与遥感 • 上一篇    下一篇

遥感影像单类分类的白化变换法

薄树奎, 李向, 李玲玲   

  1. 郑州航空工业管理学院 计算机科学与应用系, 河南 郑州 450015
  • 收稿日期:2013-09-25 修回日期:2013-12-19 出版日期:2015-02-20 发布日期:2015-02-14
  • 作者简介:薄树奎(1976—),男,博士,研究方向为遥感信息提取。E-mail:bsk586@163.com
  • 基金资助:
    国家自然科学基金(41001235; 41171341); 航空科学基金(2011ZC55005); 河南省高等学校青年骨干教师资助计划(2012GGJS-145)

A Whitening Transformation Based Approach to One-class Classification of Remote Sensing Imagery

BO Shukui, LI Xiang, LI Lingling   

  1. Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China
  • Received:2013-09-25 Revised:2013-12-19 Online:2015-02-20 Published:2015-02-14
  • Supported by:
    The National Natural Science Foundation of China (Nos. 41001235;41171341);Aeronautical Science Foundation of China (No. 2011ZC55005);Foundation for University Key Teacher by He'nan Ministry of Education (No. 2012GGJS-145)

摘要: 提出一种基于白化变换的单类分类方法。该方法仅需要兴趣类别的训练样本。首先, 基于兴趣类别对原遥感影像作白化变换, 使兴趣类别的分布在各个方向上的方差相同。然后, 确定一个距离阈值实现单类分类, 根据切比雪夫定理, 选择不同倍数的标准差作为阈值进行单类分类试验。结果表明, 各个地物类别都在3~4倍标准差的区间内获得最高的分类精度。最后, 以3倍标准差作为阈值的单类分类结果, 与单类支持向量机方法比较, 两种方法的分类结果非常相近, 而基于白化变换的方法阈值选择简单, 鲁棒性强。

关键词: 白化变换, 单类分类, 兴趣类别, 阈值

Abstract: In this study, a whitening transformation based approach to one-class classification of remote sensing imagery is investigated. Only positive data are required to train the one-class classifier. Firstly, the image data is mapped to a new feature space using the whitening processing with all directions of the class of interest. Then a threshold is selected to make a binary prediction. A heuristic method of threshold selection is performed in the experiment of one-class classification. A series of values are set to the threshold based on standard deviation, and perform the one-class classification with each threshold value. The experiment shows that high accuracy is achieved with the threshold range from 3 to 4 standard deviations of the mean. Finally, the results of one-class classification with the threshold of 3 standard deviations are compared to that of one-class support vector machine. The results indicate that the proposed method provides nearly the same accuracy of one-class classification as one-class support vector machine. The advantage of the proposed method is that it can use a constant threshold to extract various land types.

Key words: whitening transformation, one-classification, class of interest, threshold

中图分类号: