测绘学报 ›› 2016, Vol. 45 ›› Issue (12): 1413-1422.doi: 10.11947/j.AGCS.2016.20160113
王爱春1,2,3, 向茂生1, 汪丙南1
收稿日期:
2016-03-25
修回日期:
2016-10-19
出版日期:
2016-12-20
发布日期:
2017-01-02
通讯作者:
向茂生
E-mail:xms@mail.ie.ac.cn
作者简介:
王爱春(1981-),男,博士生,工程师,研究方向为多基线干涉SAR处理方法及应用。E-mail:wangaichun@cresda.com
基金资助:
WANG Aichun1,2,3, XIANG Maosheng1, WANG Bingnan1
Received:
2016-03-25
Revised:
2016-10-19
Online:
2016-12-20
Published:
2017-01-02
Supported by:
摘要: 压缩感知技术(CS)的差分TomoSAR技术解决了中高分辨率SAR数据在城区出现的叠掩问题,实现了城区地表形变信息的重构,但是该方法仅利用了目标的稀疏特性并没有考虑目标的结构特性,对具有这两种特性的目标进行重构时其性能较差。针对这一问题,本文采用联合Khatri-Rao子空间和块压缩感知(KRS-BCS),提出了一种差分SAR层析成像方法。该方法依据目标的结构特性和重构观测矩阵具有的Khatri-Rao积性质,将稀疏结构目标的差分TomoSAR问题转化为Khatri-Rao子空间下的BCS问题,然后对目标进行块稀疏的l1/l2范数最优化求解,最后通过理论分析和仿真试验对分辨能力和重构估计性能进行了定性和定量评价,仿真结果表明本文所采用的KRS-BCS方法不仅保持了高分辨率的优点,而且有效地降低了虚假目标出现的概率,大幅度提高了散射点准确重构概率,切实可行地解决了CS方法的不足。应用实例研究中,利用34景Envisat卫星ASAR时间序列影像对日本千叶县茂原市城区进行地表形变监测,并以一等水准点和实时测量的GPS站点观测数据作为参考形变结果进行验证,试验结果表明采用KRS-BCS方法反演的结果与参考形变结果保持了良好的一致性且形变速率整体偏差也较小,实现了较高精度的城区地表形变估计。
中图分类号:
王爱春, 向茂生, 汪丙南. 城区地表形变差分TomoSAR监测方法[J]. 测绘学报, 2016, 45(12): 1413-1422.
WANG Aichun, XIANG Maosheng, WANG Bingnan. Method of Monitoring Urban Area Deformation Based on Differential TomoSAR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12): 1413-1422.
[1] SANDWELL D T,SICHOIX L. Topographic Phase Recovery from Stacked ERS Interferometry and A Low-resolution Digital Elevation Model[J].Journal of Geophysical Research:Atmospheres,2000,205(B12):28211-28222. [2] USAI S. A New Approach for Long Term Monitoring of Deformations by Differential SAR Interferometry[D]. Delft:Delft University of Technology, 2001. [3] FERRETTI A, PRATI C, ROCCA F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [4] HOOPER A, ZEBKER H, SEGALL P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611. [5] KAMPES B M.Radar Interferometry:Persistent Scatterer Technique[M]. Netherlands:Springer, 2006. [6] 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668. LI Deren, LIAO Mingsheng, WANG Yan. Progress of Permanent Scatterer Interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668. [7] BERARDINO R, FORNARO G, LANARI R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [8] 邓琳, 刘国祥, 张瑞, 等. 多平台MC-SBAS长时序建模与形变提取方法[J]. 测绘学报, 2016, 45(2):213-223. DOI:10.11947/j.AGCS.2016.20140614. DENG Lin, LIU Guoxiang, ZHANG Rui, et al. A Multi-platform MC-SBAS Method for Extracting Long Gterm Ground Deformation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):213-223. DOI:10.11947/j.AGCS.2016.20140614. [9] 许文斌, 李志伟, 丁晓利, 等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012, 55(2):452-461. XU Wenbin, LI Zhiwei, DING Xiaoli, et al. Application of Small Baseline Subsets D-InSAR Technology to Estimate the Time Series Land Deformation and Aquifer Storage Coefficients of Los Angeles Area[J]. Chinese Journal of Geophysics, 2012, 55(2):452-461. [10] PERISSIN D, WANG Teng. Repeat-pass SAR Interferometry with Partially Coherent Targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280. [11] 张永红, 龚文瑜, 张继贤, 等. 基于SAR干涉点目标分析技术的城市地表形变监测[J]. 测绘学报, 2009, 38(6):482-487. DOI:10.3321/j.issn:1001-1595.2009.06.003. ZHANG Yonghong, GONG Wenyu, ZHANG Jixian, et al. Monitoring Urban Subsidence Based on SAR Interferometric Point Target Analysis[J].Acta Geodaetica et Cartographica Sinica, 2009, 38(6):482-487. DOI:10.3321/j.issn:1001-1595.2009.06.003. [12] 王明洲, 李陶, 江利明, 等. 地表形变监测的改进相干目标法[J]. 测绘学报, 2016, 45(1):36-43. DOI:10.11947/j.AGCS.2016.20140617. WANG Mingzhou, LI Tao, JIANG Liming, et al. An Improved Coherent Targets Technology for Monitoring Surface Deformation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):36-43. DOI:10.11947/j.AGCS.2016.20140617. [13] HOOPER A. A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. [14] HETLAND E A, MUSÉ P, SIMONS M, et al. Multiscale InSAR Time Series(MinTS) Analysis of Surface Deformation[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B2):B02404. [15] LOMBARDINI F.Differential Tomography:A New Framework for SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1):37-44. [16] SERAFINO F, SOLDOVIERI F,LOMBARDINI F, et al. Singular Value Decomposition Applied to 4D SAR Imaging[C]//Proceedings of International Geoscience and Remote Sensing Symposium. Seoul, Korea:IEEE, 2005:2701-2704. [17] 任笑真, 杨汝良. 一种基于逆问题的差分干涉SAR层析成像方法[J]. 电子与信息学报, 2010, 32(3):582-586. REN Xiaozhen, YANG Ruliang. An Inverse Problem Based Approach for Differential SAR Tomography Imaging[J]. Journal of Electronics & Information Technology, 2010, 32(3):582-586. [18] 孙希龙, 余安喜, 董臻, 等. 一种差分SAR层析高分辨成像方法[J]. 电子与信息学报, 2012, 34(2):273-278. SUN Xilong, YU Anxi, DONG Zhen, et al. A High Resolution Imaging Method for Differential SAR Tomography[J]. Journal of Electronics & Information Technology, 2012, 34(2):273-278. [19] ZHU Xiaoxiang,BAMLER R. Superresolving SAR Tomography for Multidimensional Imaging of Urban Areas:Compressive Sensing-based TomoSAR Inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4):51-58. [20] WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. An Efficient Tomographic Inversion Approach for Urban Mapping Using Meter Resolution SAR Image Stacks[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7):1250-1254. [21] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2):123-129. LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2):123-129. [22] SIDDIQUE M A, HAJNSEK I, AERSOSPACE G, et al. Investigating the Combined Use of Differential SAR Tomography and PSI for Spatio-temporal Inversion[C]//Proceedings of 2015 Joint Urban Remote Sensing Event(JURSE). Lausanne, Switzerland:IEEE, 2015:1-4. [23] DONOHO D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [24] ZHU Xiaoxiang,BAMLER R. Super-resolution Power and Robustness of Compressive Sensing for Spectral Estimation with Application to Spaceborne Tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):247-258. [25] 张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3):625-630. ZHANG Bingchen, WANG Wanying, BI Hui, et al. Polarimetric SAR Tomography for Forested Areas Based on Compressive Multiple Signal Classification[J]. Journal of Electronics & Information Technology, 2015, 37(3):625-630. [26] 王爱春, 向茂生. 基于块压缩感知的SAR层析成像方法[J]. 雷达学报, 2016, 5(1):57-64. WANG Aichun, XIANG Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1):57-64. [27] ELDAR Y C,KUPPINGER P,BOLCSKEI H.Block-sparse Signals:Uncertainty Relations and Efficient Recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6):3042-3054. [28] FU Yuli, LI Haifeng, ZHANG Qiheng, et al. Block-sparse Recovery via Redundant Block OMP[J]. Signal Processing, 2014, 97:162-171. |
[1] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[2] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[3] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[4] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[5] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[6] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[8] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
[9] | 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. |
[10] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. |
[11] | 邓睿哲, 陈启浩, 陈奇, 刘修国. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787-797. |
[12] | 黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801-801. |
[13] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[14] | 赵生银, 安如, 朱美如. 联合像元-深度-对象特征的遥感图像城市变化检测[J]. 测绘学报, 2019, 48(11): 1452-1463. |
[15] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||