[1] 巩现勇, 武芳. 城市建筑群网格模式的图论识别方法[J]. 测绘学报, 2014, 43(9):960-968. DOI:10.13485/j.cnki.11-2089.2014.0125. GONG Xianyong, WU Fang. The Graph Theory Approach to Grid Pattern Recognition in Urban Building Groups[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):960-968. DOI:10.13485/j.cnki.11-2089.2014.0125. [2] ANDERS K H. A Hierarchical Graph-clustering Approach to Find Groups of Objects[C]//The 5th Workshop on Progress in Automated Map Generalization. Paris:[s.n.], 2003. [3] REGNAULD N. Contextual Building Typification in Automated Map Generalization[J]. Algorithmica, 2001, 30(2):312-333. [4] LI Z, YAN H, AI T, et al. Automated Building Generalization Based on Urban Morphology and Gestalt Theory[J]. International Journal of Geographical Information Science, 2004, 18(5):513-534. [5] 艾廷华, 郭仁忠. 基于格式塔识别原则挖掘空间分布模式[J]. 测绘学报, 2007, 36(3):302-308. DOI:10.3321/j.issn:1001-1595.2007.03.011. AI Tinghua, GUO Renzhong. Polygon Cluster Pattern Mining Based on Gestalt Principles[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3):302-308. DOI:10.3321/j.issn:1001-1595.2007.03.011. [6] YAN Haowen, WEIBEL R, YANG Bisheng. A Multi-parameter Approach to Automated Building Grouping and Generalization[J]. Geoinformatica, 2008, 12(1):73-89. [7] ZHANG Liqiang, DENG Hao, CHEN Dong, et al. A Spatial Cognition-based Urban Building Clustering Approach and Its Applications[J]. International Journal of Geographical Information Science, 2013, 27(4):721-740. [8] ALLOUCHE M K, MOULIN B. Amalgamation in Cartographic Generalization Using Kohonen's Feature Nets[J]. International Journal of Geographical Information Science, 2005, 19(8-9):899-914. [9] WANG Yuebin, ZHANG Liqiang, MATHIOPOULOS P T, et al. A Gestalt Rules and Graph-cut-based Simplification Framework for Urban Building Models[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35:247-258. [10] 程博艳, 刘强, 李小文. 一种建筑物群智能聚类法[J]. 测绘学报, 2013, 42(2):290-294, 303. CHENG Boyan, LIU Qiang, LI Xiaowen. Intelligent Building Grouping Using a Self-organizing Map[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):290-294, 303. [11] RAINSFORD D, MACKNESS W. Template Matching in Support of Generalisation of Rural Buildings[C]//The 10th International Symposium on Spatial Data Handling. Berlin Heidelberg:Springer, 2002:137-151. [12] YANG Weiping. Identify Building Patterns[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Beijing:ISPRS, 2008:391-398. [13] ANDERS K H. Grid Typification[C]//Proceedings of the 12th International Symposium on Spatial Data Handling. Berlin Heidelberg:Springer, 2006:633-642. [14] ZHANG Xiang, AI Tinghua, STOTER J, et al. Building Pattern Recognition in Topographic Data:Examples on Collinear and Curvilinear Alignments[J]. Geoinformatica, 2013, 17(1):1-33. [15] 巩现勇, 武芳, 钱海忠, 等. 建筑群多连通直线模式的参数识别方法[J]. 武汉大学学报(信息科学版), 2014, 39(3):335-339. GONG Xianyong, WU Fang, QIAN Haizhong, et al. The Parameter Discrimination Approach to Multi-connected Linear Pattern Recognition in Building Groups[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3):335-339. [16] DU Shihong, SHU Mi, FENG C C. Representation and Discovery of Building Patterns:A Three-level Relational Approach[J]. International Journal of Geographical Information Science, 2016, 30(6):1161-1186. [17] Department of Geography, University of Zurich. Selection of Basic Measures[EB/OL]. http://agent.ign.fr/deliverable/DC1.html, 1999. [18] DUCHÊNE C, BARD S, BARILLOT X, et al. Quantitative and Qualitative Description of Building Orientation[C]//5th Workshop on Progress in Automated Map Generalization. Paris:[s.n.], 2003. [19] BURGHARDT D, STEINIGER S. Usage of Principal Component Analysis in the Process of Automated Generalisation[C]//Proceedings of the 22nd International Cartographic Conference. A Coruna, Spain, 2005. [20] STEINIGER S, LANGE T, BURGHARDT D, et al. An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques[J]. Transactions in GIS, 2008, 12(1):31-59. [21] PEURA M, ⅡVARINEN J. Efficiency of Simple Shape Descriptors[M]//ARCELLI C, CORDELLA L P, SANNITI DI BAJA G. Aspects of Visual form Processing. Singapore:World Scientific, 1997:443-451. [22] LI Wenwen, GOODCHILD M F, CHURCH R. An Efficient Measure of Compactness for Two-dimensional Shapes and Its Application in Regionalization Problems[J]. International Journal of Geographical Information Science, 2013, 27(6):1227-1250. [23] MACEACHREN A M. Compactness of Geographic Shape:Comparison and Evaluation of Measures[J]. Geografiska Annaler, 1985, 67(1):53-67. [24] ZHANG Dengsheng, LU Guojun. Review of Shape Representation and Description Techniques[J]. Pattern Recognition, 2004, 37(1):1-19. [25] ŽUNIC' J, HIROTA K, ROSIN P L. A Hu Moment Invariant as a Shape Circularity Measure[J]. Pattern Recognition, 2010, 43(1):47-57. [26] 郭庆胜, 郑春燕, 胡华科. 基于邻近图的点群层次聚类方法的研究[J]. 测绘学报, 2008, 37(2):256-261. DOI:10.3321/j.issn:1001-1595.2008.02.022. GUO Qingsheng, ZHENG Chunyan, HU Huake. Hierarchical Clustering Method of Group of Points Based on the Neighborhood Graph[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2):256-261. DOI:10.3321/j.issn:1001-1595.2008.02.022. |