测绘学报 ›› 2018, Vol. 47 ›› Issue (2): 260-268.doi: 10.11947/j.AGCS.2018.20170522
唐炉亮1, 字陈波2, 李清泉1,3, 初旭1, 刘海波2, 陈西1, 孙飞1
收稿日期:
2017-09-14
修回日期:
2017-11-27
出版日期:
2018-02-20
发布日期:
2018-03-02
通讯作者:
陈西
E-mail:1141003124@qq.com
作者简介:
唐炉亮(1973-),男,博士,教授,研究方向为时空GIS、时空大数据挖掘、精密工程测量等。E-mail:tll@whu.edu.cn
基金资助:
TANG Luliang1, ZI Chenbo2, LI Qingquan1,3, CHU Xu1, LIU Haibo2, CHEN Xi1, SUN Fei1
Received:
2017-09-14
Revised:
2017-11-27
Online:
2018-02-20
Published:
2018-03-02
Supported by:
摘要: 大型水电站引水道竖井段的混凝土病害检测,直接涉及水电站的安全运行。针对大型水电站百米级引水竖井数据获取与病害检测的国际性难题,本文提出一种以无人系留飞艇为浮空装载平台,集成多传感器的百米级垂直竖井检测方案;自主研制了竖井环境适应性强的圆柱形无人系留飞艇浮空装载平台,集成全景CCD相机、三维激光扫描仪、惯性导航测量单元、气压高度计、照明模块、控制模块等多传感器,自主研制了全球首台百米级竖井数据获取与病害检测装备,于2017年5-7月在云南糯扎渡水电厂2、3、4号200 m级引水道竖井现场进行了试验。结果表明,检测装置能够满足大型水电站百米级竖井引水道的检修工作,填补了百米级竖井检测的国际空白,具有较好的应用前景。
中图分类号:
唐炉亮, 字陈波, 李清泉, 初旭, 刘海波, 陈西, 孙飞. 大型水电工程百米级引水竖井的病害检测技术[J]. 测绘学报, 2018, 47(2): 260-268.
TANG Luliang, ZI Chenbo, LI Qingquan, CHU Xu, LIU Haibo, CHEN Xi, SUN Fei. Defect Detecting Technology for over 100-meter Shaft[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 260-268.
[1] 张宗亮. 糯扎渡水电站工程特点及关键技术研究[J]. 水力发电, 2005, 31(5):4-7. ZHANG Zongliang. The Project Characteristics of Nuozhadu Hydropower Station and Its Key Technology Research Results[J]. Water Power, 2005, 31(5):4-7. [2] 张宗亮, 袁友仁, 冯业林. 糯扎渡水电站高心墙堆石坝关键技术研究[J]. 水力发电, 2006, 32(11):5-8. ZHANG Zongliang, YUAN Youren, FENG Yelin. Study on Key Techniques of Nuozhadu's Earth Core Rockfill Dam[J]. Water Power, 2006, 32(11):5-8. [3] BRENNAN T S, ZHANG Qinfen. Hydropower Advancement Project:Best Practice Catalog[R]. Revision 1.0, 1/20/2012. Chattanooga, TN:Mesa Associates, Inc., 2012. [4] 董安国, 张仙艳, 薛宏智, 等. 混凝土表面裂缝检测的多级聚类算法[J]. 交通运输工程学报, 2013, 13(6):7-13. DONG Anguo, ZHANG Xianyan, XUE Hongzhi, et al. Multi-Level Clustering Algorithm for Crack Detection of Concrete Surface[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6):7-13. [5] 单宝华, 申宇. 立体视觉方法在混凝土表面裂缝检测中的应用[J]. 工程力学, 2013, 30(9):125-131. SHAN Baohua, SHEN Yu. Application of Stereovision Method to Detect Concrete Surface Crack[J]. Engineering Mechanics, 2013, 30(9):125-131. [6] 宋福春, 王彬. 超声波法检测混凝土裂缝注胶质量[J]. 沈阳工业大学学报, 2017, 39(1):109-115. SONG Fuchun, WANG Bin. Ultrasonic Detection for Glue-injection Quality of Cracks in Concrete[J]. Journal of Shenyang University of Technology, 2017, 39(1):109-115. [7] 田晖, 辛纯涛, 张坤. 超声波单面平测法检测混凝土构件裂缝深度可靠性分析[J]. 兰州理工大学学报, 2013, 39(6):133-136. TIAN Hui, XIN Chuntao, ZHANG Kun. The Reliability Analysis on Single Plane Detecting of Ultrasonic Wave for the Concrete Structures Crack Depth[J]. Journal of Lanzhou University of Technology, 2013, 39(6):133-136. [8] 邓安仲, 赵启林, 李胜波, 等. 混凝土裂缝红外热成像分布式监测技术研究[J]. 建筑材料学报, 2013, 16(2):284-288. DENG Anzhong, ZHAO Qilin, LI Shengbo, et al. Study on Distributed Monitoring Technology of Infrared Thermal Image of Concrete Crack[J]. Journal of Building Materials, 2013, 16(2):284-288. [9] 王杰, 张勇, 李向辉, 等. 混凝土受压破坏过程声发射和红外热像特性研究[J]. 水利水电技术, 2016, 47(10):106-108, 146. WANG Jie, ZHAGN Yong, LI Xianghui, et al. Study on Characteristics of Acoustic Emission and Infrared Thermal Imaging during Compressive Damage of Concrete[J]. Water Resources and Hydropower Engineering, 2016, 47(10):106-108, 146. [10] 杨天俊. 三维激光扫描技术在拉西瓦水电站工程中的应用[J]. 西北水电, 2013(1):4-6, 18. YANG Tianjun. Application of 3D Laser Scanning Technology in Construction of Laxiwa Hydropower Project[J] Northwest Hydropower, 2013(1):4-6, 18. [11] 李小顺, 冯艺, 彭望. 三维激光扫描技术在引水隧洞检修中的应用[J]. 人民长江, 2017, 48(2):74-78. LI Xiaoshun, FENG Yi, PENG Wang. Application of 3D Laser Scanning Technology in Diversion Tunnel Detection[J]. Yangtze River, 2017, 48(2):74-78. [12] Hibbard Inshore LLC. Long Range Tailrace, Pressure Shaft and Penstock Inspection[J]. International Water Power & Dam Construction, 2005(10):37-38. [13] Hibbard Inshore LLC. ROV Underwater Inspection of Long Tunnels for Snowy Hydro[EB/OL]. http://www.hibbardinshore.com/rov-underwater-inspection-of-long-tunnels-for-snowy-hydro/. [14] 程争刚, 张利. 一种基于无人机位姿信息的航拍图像拼接方法[J]. 测绘学报, 2016, 45(6):698-705. DOI:10.11947/j.AGCS.2016.20150567. CHENG Zhenggang, ZHANG Li. An Aerial Image Mosaic Method Based on UAV Position and Attitude Information[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6):698-705. DOI:10.11947/j.AGCS.2016.20150567. [15] 吴云东, 张强. 立体测绘型双翼民用无人机航空摄影系统的实现与应用[J]. 测绘科学技术学报, 2009, 26(3):161-164, 169. WU Yundong, ZHANG Qiang. Implementation and Application of Aerial Photographic System by Civil Unmanned Biplane for Survey and Stereo Mapping[J]. Journal of Geomatics Science and Technology, 2009, 26(3):161-164, 169. [16] DE MARINA H G, PEREDA F J, GIRON-SIERRA J M, et al. UAV Attitude Estimation Using Unscented Kalman Filter and TRIAD[J]. IEEE Transactions on Industrial Electronics, 2016, 59(11):4465-4474. [17] NIETHAMMER U, JAMES M R, ROTHMUND S, et al. UAV-based Remote Sensing of the Super-Sauze Landslide:Evaluation and Results[J]. Engineering Geology, 2012, 128:2-11. [18] BALAGUER C, MONTERO R, VICTORES J G, et al. Towards Fully Automated Tunnel Inspection:A Survey and Future Trends[C]//Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC). Sydney, Australia:IAARC, 2014:19-33. [19] MONTERO R, VICTORES J G, MARTÍNES S, et al. Past, Present and Future of Robotic Tunnel Inspection[J]. Automation in Construction, 2015, 59:99-112. [20] LOUPOS K, DOULAMIS A D, STENTOUMIS C, et al. Autonomous Robotic System for Tunnel Structural Inspection and Assessment[J]. International Journal of Intelligent Robotics and Applications, 2017. DOI:10.1007/s41315-017-0031-9. [21] ÖZASLAN T, SHEN SHAOJIE, MULGAONKAR Y, et al. Inspection of Penstocks and Featureless Tunnel-like Environments Using Micro UAVs[M]//MEJIAS L, CORKE P, ROBERTS J. Field and Service Robotics. Cham:Springer, 2015:123-136. [22] 左建章. 关于空间信息获取技术的分析[J]. 地理信息世界, 2010, 8(3):45-49. ZUO Jianzhang. Analysis on Acquisition Technology of Digital City Information[J]. Geomatics World, 2010, 8(3):45-49. [23] 王文龙, 唐炉亮, 李清泉, 等. 一种利用飞艇航拍视频的运动车辆检测方法[J]. 武汉大学学报(信息科学版), 2010, 35(7):786-779. WANG Wenlong, TANG Luliang, LI Qingquan, et al. Vehicle Detection Algorithm with Video from Airborne Camera[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7):786-779. [24] 王文龙, 李清泉. 基于蒙特卡罗算法的车辆跟踪方法[J]. 测绘学报, 2011, 40(2):200-203. WANG Wenlong, LI Qingquan. A Vehicle Tracking Algorithm with Monte-Carlo Method[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):200-203. [25] 彭晓东, 林宗坚. 无人飞艇低空航测系统[J]. 测绘科学, 2009, 34(4):11-14, 20. PENG Xiaodong, LIN Zongjian. Unmanned Airship Low Altitude System for Aerial Photogrammetry[J]. Science of Surveying and Mapping, 2009, 34(4):11-14, 20. |
[1] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[2] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[3] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[4] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[5] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[6] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[8] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
[9] | 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. |
[10] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. |
[11] | 邓睿哲, 陈启浩, 陈奇, 刘修国. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787-797. |
[12] | 黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801-801. |
[13] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[14] | 赵生银, 安如, 朱美如. 联合像元-深度-对象特征的遥感图像城市变化检测[J]. 测绘学报, 2019, 48(11): 1452-1463. |
[15] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||