[1] XIA Zhihong. The Existence of Noncollision Singularities in Newtonian Systems[J]. Annals of Mathematics, 1992, 135(3):411-468. [2] DIACU F. The Solution of The N-body Problem[J]. The Mathematical Intelligencer, 1996, 18(3):66-70. [3] DIACU F, HOLMES P. Celestial Encounters:the Origins of Chaos and Stability[M]. Princeton, NJ:Princeton University Press, 1996. [4] WANG Qiudong. The Global Solution of the N-body Problem[J]. Celestial Mechanics and Dynamical Astronomy, 1990, 50(1):73-88. [5] XU Guochang. Sciences of Geodesy-I:Advances and Future Directions[M]. Berlin:Springer, 2010:105-154. [6] BROUWER D, CLEMENCE G M. Methods of Celestial Mechanics[M]. Burlington, MA:Elsevier, 2013. [7] CHOBOTOV V A. Orbital Mechanics[M]. 3rd ed. Washington DC:AIAA, 2002. [8] XU Guochang, XU Tianhe, YEH T K, et al. Analytical Solution of a Satellite Orbit Disturbed by Lunar and Solar Gravitation[J]. Monthly Notices of the Royal Astronomical Society, 2011, 410(1):645-653. [9] XU Yan, YANG Yuanxi, ZHANG Qin, et al. Solar Oblateness and Mercury's Perihelion Precession[J]. Monthly Notices of the Royal Astronomical Society, 2011, 415(4):3335-3343. [10] XU Guochang, XU Jia. On Orbital Disturbing Effects of the Solar Radiation[J]. Monthly Notices of the Royal Astronomical Society, 2013, 432(1):584-588. [11] 张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. ZHANG Bingbing, NIE Linjuan, WU Tangting, et al. Centimeter Precise Orbit Determination for SWARM Satellite via Reduced-dynamic Method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. [12] 邹贤才, 李建成, 姜卫平, 等. 卫星重力资料分析的同解法研究及其仿真[J]. 测绘学报, 2010, 39(4):344-348. ZOU Xiancai, LI Jiancheng, JIANG Weiping, et al. Research on the Simultaneous Solution Method for Satellite Gravity Data Analysis and Its Simulation[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4):344-348. [13] HAVEL K. N-body Gravitational Problem:Unrestricted Solution[M]. Brampton, ON, Canada:Grevyt Press, 2008. [14] BATTIN R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. Reston, VA:AIAA, 1999. [15] KAULA W M. Theory of Satellite Geodesy:Applications of Satellites to Geodesy[M]. Mineola, NY:Dover Publications Inc, 2000. [16] XU Guochang. Orbits[M]. Berlin:Springer, 2008. [17] 韩星远, 向开恒, 王海红. 第一类无奇点变量的广播星历参数拟合算法[J]. 航天器工程, 2011, 20(4):54-59. HAN Xingyuan, XIANG Kaiheng, WANG Haihong. Research on Broadcast Ephemeris Parameters Fitting Algorithm Based on the First Class of No Singularity Variables[J]. Spacecraft Engineering, 2011, 20(4):54-59. [18] 张中凯, 杜兰, 旦增曲英, 等. 基于第二类无奇点根数的改进根数[J]. 测绘科学技术学报, 2012, 29(4):257-261. ZHANG Zhongkai, DU Lan, DAN Zengquying, et al. Improved Elements Based on Second Class of No-singularity Variables[J]. Journal of Geomatics Science and Technology, 2012, 29(4):257-261. [19] BROUCKE R A, CEFOLA P J. On the Equinoctial Orbit Elements[J]. Celestial Mechanics, 1972, 5(3):303-310. [20] BATTIN R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. New York:American Institute of Aeronautics and Astronautics. 1987. [21] XU Guochang, XU Jia. On the Singularity Problem in Orbital Mechanics[J]. Monthly Notices of the Royal Astronomical Society, 2013, 429(2):1139-1148. [22] XU Guochang, XU Jia. Orbits:2nd Order Singularity-free Solutions[M]. Berlin:Springer, 2013. [23] XU G, LV Z P, SHEN Y Z, et al. A Mathematical Derivation of Singularity-free Lagrange Equations of Planetary Motion, Special Issue for Celebration 80th Birthday of Academician Houze Xu[J]. Journal of Surveying and Mapping, 2014. [24] 许国昌, 陈武, 沈云中, 等. 高斯无奇点卫星运动方程的数学推导——谨以本文恭贺师兄欧吉坤教授七十寿辰[J]. 导航定位学报, 2015, 3(3):5-12. XU Guochang, CHEN Wu, SHEN Yunzhong, et al. A Mathematical Derivation of Singularity-free Gaussian Equations of Planetary Motion[J]. Journal of Navigation and Positioning, 2015, 3(3):5-12. [25] 杜玉军. 卫星轨道的三维可视化程序设计[D]. 武汉:武汉大学, 2008. DU Yujun. 3D Visualization Programming of Satellite Orbiting[D]. Wuhan:Wuhan University, 2008. |