测绘学报 ›› 2018, Vol. 47 ›› Issue (6): 854-863.doi: 10.11947/j.AGCS.2018.20180135

• 数字摄影测量与深度学习方法 • 上一篇    下一篇

多源DEM融合的高差拟合神经网络方法

沈焕锋1, 刘露1, 岳林蔚2, 李星华3, 张良培4   

  1. 1. 武汉大学资源与环境科学学院, 湖北 武汉 430079;
    2. 中国地质大学(武汉)信息工程学院, 湖北 武汉 430074;
    3. 武汉大学遥感信息工程学院, 湖北 武汉 430079;
    4. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079
  • 收稿日期:2017-11-30 修回日期:2018-03-28 出版日期:2018-06-20 发布日期:2018-06-21
  • 作者简介:沈焕锋(1980-),男,教授,研究方向为影像质量改善、数据融合与同化、遥感制图与应用等。E-mail:shenhf@whu.edu.cn
  • 基金资助:
    国家自然科学基金(61671334;41701394;41661134015)

A Multi-source DEM Fusion Method Based on Elevation Difference Fitting Neural Network

SHEN Huanfeng1, LIU Lu1, YUE Linwei2, LI Xinghua3, ZHANG Liangpei4   

  1. 1. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China;
    2. Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China;
    3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
    4. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2017-11-30 Revised:2018-03-28 Online:2018-06-20 Published:2018-06-21
  • Supported by:
    The National Natural Science Foundation of China (Nos.61671334;41701394;41661134015)

摘要: 本文侧重于介绍智能化摄影测量机器学习的高差拟合神经网络方法。观测手段和处理方式等限制导致全球高质量无缝DEM数据的缺乏,进而制约了它在水文、地质、气象及军事等领域的应用。本文提出了一种基于高差拟合神经网络的多源DEM融合方法,尝试融合全球DEM产品SRTM1、ASTER GDEM v2和激光雷达测高数据ICESat GLAS。首先,根据ICESat GLAS的相关参数及与DEM数据的高程差值,结合坡度自适应的思想设置高差阈值对ICESat GLAS进行滤波,剔除异常数据点。然后,以ICESat GLAS数据为控制点,利用神经网络模型拟合ASTER GDEM v2的误差分布。以地形坡度信息和经纬度坐标作为网络输入,ICESat GLAS和ASTER GDEM v2的高程差值作为目标输出,训练得到预测高差,将其与ASTER GDEM v2高程值相加即可获得校正结果。最后,引入TIN差分曲面的方法,利用校正后的ASTER GDEM v2高程值对SRTM1的数据空洞进行填充,融合生成空间无缝DEM。本文通过随机选取数据进行真实试验,对模型进行了精度验证,并给出了处理结果的定量评价和目视效果。结果表明,不论是空洞还是整体区域,本文方法相比其他DEM数据集和其他方法的处理结果都能够在RMSE上表现出优势,同时,本文提出的方法能够有效克服ASTER GDEM中异常值的影响,得到空间无缝DEM。

关键词: 多源DEM融合, 神经网络, TIN差分曲面, 坡度自适应

Abstract: This paper focuses on machine learning in intelligent photogrammetry:the elevation difference fitting neural network method.The limitations of observation technologies and processing methods lead to the lack of global high-accuracy seamless DEMs,which further restrict DEMs’ application in the fields of hydrology,geology,meteorology,military and other applications.In this paper,we propose a multi-source DEM fusion method using the neural network model trained based on elevation difference.The proposed method is employed to generate a high-quality seamless DEM dataset blending SRTM1,ASTER GDEM v2,and ICESat GLAS.At first,the ICESat GLAS data were filtered according to the relevant parameters and the elevation differences with DEMs.The threshold of elevation difference adaptively varied with terrain slope to remove the abnormal points effectively.The neural network was then applied to learn the error distribution of ASTER GDEM v2,using the ICESat GLAS data as the control points.We constructed the network input composed of slope information,latitude and longitude coordinates,while the elevation difference of ICESat GLAS and ASTER GDEM v2 were set as the target output.The corrected ASTER GDEM v2 results can be obtained by adding the predicted output to the original elevation values.At last,the corrected ASTER GDEM v2 values were utilized to fill the voids of SRTM1,where the vertical bias between the datasets were dealt with TIN delta surface method to blend the seamless DEM.Randomly selected data were used for actual experiments,and the proposed model was evaluated by comparing with other methods and DEM datasets through quantitative evaluation and visual discrimination.Experiment results show that the proposed method has lower value of RMSE than compared methods both in void or the whole area,which can effectively overcome the influence of outliers in ASTER GDEM v2,and generate seamless DEM.

Key words: multi-source DEM fusion, neural network, TIN delta surface, slope adaption

中图分类号: