测绘学报 ›› 2019, Vol. 48 ›› Issue (7): 849-861.doi: 10.11947/j.AGCS.2019.20180269
董景龙1,2, 江利明1,2, 蒋厚军1,3, 沈强1,2, 李德伟1,2, 汪汉胜1,2, 毛松1,2
收稿日期:
2018-06-15
修回日期:
2019-03-28
出版日期:
2019-07-20
发布日期:
2019-07-26
通讯作者:
沈强
E-mail:cl980606@asch.whigg.ac.cn
作者简介:
董景龙(1990-),男,博士生,研究方向为月基InSAR观测模式。
基金资助:
DONG Jinglong1,2, JIANG Liming1,2, JIANG Houjun1,3, SHEN Qiang1,2, LI Dewei1,2, WANG Hansheng1,2, MAO Song1,2
Received:
2018-06-15
Revised:
2019-03-28
Online:
2019-07-20
Published:
2019-07-26
Supported by:
摘要: 本文根据地-月相对运动特征,建立了月基重轨InSAR观测几何模型,使用NASA/JPL高精度DE430月球星历数据,计算了月基SAR的重访时间以及对应的空间基线。结果表明:月基SAR的重返周期约24.8 h;由于月球南北向速度发生周期性变化,月基重轨InSAR垂直基线长度会随重访次数产生较大变化,且基线长度近似呈现1恒星月周期变化特征。在空间基线约束下,本文进一步分析了月基重轨InSAR时-空基线特征,研究发现:①在确定的初始观测条件下,只能在特定的时间基线上实现月基重轨InSAR观测,并且初始观测时间不同,可实现月基重轨InSAR观测的时间基线也不同;②不同的时间基线可形成干涉组合个数不同,约50%的干涉组合个数对应的时间基线接近1恒星月及其整数倍;不同的观测位置可形成干涉组合个数不同,约80%的干涉组合个数发生在月球赤纬大于10°区域。因此,月基重轨InSAR观测数据获取计划的设计应综合考虑时间基线、空间基线以及初始观测时间等因素。
中图分类号:
董景龙, 江利明, 蒋厚军, 沈强, 李德伟, 汪汉胜, 毛松. 月基SAR重复轨道干涉测量时-空基线分析[J]. 测绘学报, 2019, 48(7): 849-861.
DONG Jinglong, JIANG Liming, JIANG Houjun, SHEN Qiang, LI Dewei, WANG Hansheng, MAO Song. Spatio-temporal baseline analysis of lunar-based repeat-track SAR interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 849-861.
[1] 许才军, 申文斌, 晁定波. 地球物理大地测量学原理与方法[M]. 武汉:武汉大学出版社, 2006. XU Caijun, SHEN Wenbin, CHAO Dingbo. Geophysical geodesy principles and methods[M]. Wuhan:Wuhan University Press, 2006. [2] 张红, 王超, 吴涛, 等. 基于相干目标的DInSAR方法研究[M]. 北京:科学出版社, 2009. ZHANG Hong, WANG Chao, WU Tao, et al. D-InSAR method based on coherent target[M]. Beijing:Science Press, 2009. [3] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. [4] RAMSEY M. ESS findings:lunar science planning and workshop overview[C]//Proceedings of NASA Advisory Council Workshop on Science Associated with the Lunar Exploration Architecture. Arizona:NASA, 2007. [5] SARABANDI K. Lunar-based large baseline synthetic aperture radar interferometry of earth[C]//Proceedings of NASA Advisory Council Workshop on Science Associated with the Lunar Exploration Architecture. Arizona:NASA, 2007. [6] 郭华东, 丁翼星, 刘广, 等. 面向全球变化探测的月基成像雷达概念研究[J]. 中国科学:地球科学, 2013, 43(11):1760-1769. GUO Huadong, DING Yixing, LIU Guang, et al. Conceptual study of lunar-based SAR for global change monitoring[J]. Science China Earth Sciences, 2013, 43(11):1760-1769. [7] 丁翼星, 郭华东, 刘广. 面向全球变化探测的月基对地观测覆盖性能分析[J]. 湖南大学学报(自然科学版), 2014, 41(10):96-102. DING Yixing, GUO Huadong, LIU Guang. Coverage performance analysis of earth observation from lunar base for global change detection[J]. Journal of Hunan University (Natural Sciences), 2014, 41(10):96-102. [8] DING Yixing, GUO Huadong, LIU Guang. Potential applications of the moon based synthetic aperture radar for earth observation[C]//Proceeding of 2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne, Australia:IEEE, 2013:1767-1769. [9] FORNARO G, FRANCESCHETTI G, LOMBARDINI F, et al. Potentials and limitations of Moon-borne SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):3009-3019. [10] MOCCIA A, RENGA A. Synthetic aperture radar for Earth observation from a lunar base:Performance and potential applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1034-1051. [11] 谷昕炜, 陈杰, 杨威, 等. 月基SAR仿真成像研究[J]. 无线电工程, 2018, 48(2):88-91. GU Xinwei, CHEN Jie, YANG Wei, et al. Research on echo simulation and imaging of lunar-based SAR[J]. Radio Engineering, 2018, 48(2):88-91. [12] XU Zhen, CHEN Kunshan. On signal modeling of moon-based synthetic aperture radar (SAR) imaging of earth[J]. Remote Sensing, 2018, 10(3):486. [13] RENGA A, MOCCIA A. Preliminary analysis of a Moon-based interferometric SAR system for very high resolution Earth remote sensing[C]//Proceedings of the 9th ILEWG International Conference on Exploration and Utilization of the Moon. Sorrento, Italy:Lunar Explorers Society, 2007:22-26. [14] DING Y X, GUO H D, LIU G, et al. The analysis of moonborne cross track synthetic aperture radar interferometry for global environment change monitoring[J]. IOP Conference Series:Earth and Environmental Science. IOP Publishing, 2014, 17(1):012278. [15] 丁翼星. 月基对地观测合成孔径雷达与全球变化应用研究[D]. 北京:中国科学院大学, 2014. DING Yixing. Moonborne earth observation synthetic aperture radar and its application in global change[D]. Beijing:Institute of Electronics, CAS, 2014. [16] WILLIAMS J G, BOGGS D H. DE421 lunar orbit, physical librations, and surface coordinates[C]//Proceedings of the 16th International Workshop on Laser Ranging. Poznań:Jet Propulsion Laboratory, 2008. [17] YE Hanlin, GUO Huadong, LIU Guang, et al. Observation scope and spatial coverage analysis for earth observation from a Moon-based platform[J]. International Journal of Remote Sensing, 2017, 39(18):5809-5833. [18] YE Hanlin, GUO Huadong, LIU Guang, et al. Observation duration analysis for Earth surface features from a Moon-based platform[J]. Advances in Space Research, 2018, 62(2):274-287. [19] 丁翼星, 郭华东, 刘广. 基于JPL星历的月基SAR多普勒参数估算方法[J]. 北京航空航天大学学报, 2015, 41(1):71-76. DING Yixing, GUO Huadong, LIU Guang. Method to estimate the Doppler parameters of Moon-borne SAR using JPL ephemeris[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):71-76. [20] FOLKNER W M, WILLIAMS J G, BOGGS D H, et al. The planetary and lunar ephemerides DE430 and DE431[C]//Proceedings of the Interplanetary Network Progress Report 42-196.[S.l.]:IPN, 2014:1-81. [21] 金文敬. 太阳系行星和月球历表的发展[J]. 天文学进展, 2015, 33(1):103-121. JIN Wenjing. Development of planetary and lunar ephemeris in the solar system[J]. Progress in Astronomy, 2015, 33(1):103-121. [22] LIESKE J H. Precession matrix based on IAU/1976/system of astronomical constants[J]. Astronomy and Astrophysics, 1979, 73(3):282-284. [23] SEIDELMANN P K, ABALAKIN V K, BURSA M, et al. Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites:2000[J]. Celestial Mechanics and Dynamical Astronomy, 2002, 82(1):83-111. [24] GSFC. A standardized lunar coordinate system for the lunar reconnaissance orbiter[R]. LRO Project White Paper.[S.l.]:NASA, 2008. [25] REN Yuanzhen, GUO Huadong, LIU Guang, et al. Simulation study of geometric characteristics and coverage for moon-based earth observation in the electro-optical region[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2431-2440. [26] PETIT G, LUZUM B J. IERS conventions (2010)[R]. IERS Technical Note 36. Frankfurt am Main:IERS, 2010. [27] MCCARTHY D D, PETIT G. IERS CONVENTIONS (2003)[R] IERS Technical Note no. 32. Frankfurt am Main:IERS, 2004. [28] ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. [29] GATELLI F, GUAMIERI A M, PARIZZI F, et al. The wavenumber shift in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):855-865. [30] HANSSEN R F. Radar interferometry:data interpretation and error analysis[M]. Dordrecht:Springer Science & Business Media, 2001. [31] MEYER F J, SANDWELL D T. SAR interferometry at Venus for topography and change detection[J]. Planetary and Space Science, 2012, 73(1):130-144. [32] HU Cheng, LI Yuanhao, DONG Xichao, et al. Optimal data acquisition and height retrieval in repeat-track geosynchronous SAR interferometry[J]. Remote Sensing, 2015, 7(10):13367-13389. |
[1] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[2] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[3] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[4] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[5] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[6] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[7] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[8] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
[9] | 詹总谦, 胡孟琦, 满益云. 多尺度区域生长点云滤波地表拟合法[J]. 测绘学报, 2020, 49(6): 757-766. |
[10] | 韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. |
[11] | 邓睿哲, 陈启浩, 陈奇, 刘修国. 遥感影像船舶检测的特征金字塔网络建模方法[J]. 测绘学报, 2020, 49(6): 787-797. |
[12] | 黄亮. 多时相遥感影像变化检测技术研究[J]. 测绘学报, 2020, 49(6): 801-801. |
[13] | 吴文豪, 张磊, 李陶, 龙四春, 段梦, 周志伟, 祝传广, 蒋廷臣. 基于几何配准的多模式SAR影像配准及其误差分析[J]. 测绘学报, 2019, 48(11): 1439-1451. |
[14] | 赵生银, 安如, 朱美如. 联合像元-深度-对象特征的遥感图像城市变化检测[J]. 测绘学报, 2019, 48(11): 1452-1463. |
[15] | 刘照欣, 赵辽英, 厉小润, 陈淑涵. 高光谱亚像元定位的线特征探测法[J]. 测绘学报, 2019, 48(11): 1464-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||