测绘学报 ›› 2015, Vol. 44 ›› Issue (4): 462-470.doi: 10.11947/j.AGCS.2015.20120523

• 地图学与地理信息 • 上一篇    

应用人工免疫算法快速规划3D TF/TA2航线

刘丽峰1, 杨飞2, 张树清3, 孔维华1, 王殷行1   

  1. 1. 山东理工大学, 山东 淄博 255049;
    2. 中国科学院地理科学与资源研究所, 北京 100101;
    3. 中国科学院东北地理与农业生态研究所, 吉林 长春 130102
  • 收稿日期:2012-09-05 修回日期:2014-09-07 出版日期:2015-04-20 发布日期:2015-04-27
  • 通讯作者: 张树清E-mail:zhangshuqing@163.com E-mail:zhangshuqing@163.com
  • 作者简介:刘丽峰(1976—),女,讲师,研究方向为三维GIS飞行航线规划.E-mail:hebeiliu@163.com
  • 基金资助:

    中国科学院重点部署项目(KZZD-EW-07-02); 国家自然基金(41301607); 山东省自然科学基金(ZR2012DL06)

Quickly Planning TF/TA2 Trajectory by Artificial Immune Algorithm

LIU Lifeng1, YANG Fei2, ZHANG Shuqing3, KONG Weihua1, WANG Yinxing1   

  1. 1. Shandong University of Technology, Zibo 255049, China;
    2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    3. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
  • Received:2012-09-05 Revised:2014-09-07 Online:2015-04-20 Published:2015-04-27
  • Supported by:

    The Key Research Program of the Chinese Academy of Sciences (No. KZZD-EW-07-02);The National Natural Science Foundation of China (No. 41301607);The National Natural Science Foundation of Shandong Province of China (No. ZR2012DL06)

摘要:

针对复杂环境下单(双)机TF/TA2飞行路径规划问题,提出了满足飞机可飞性和可操作性的人工免疫算法飞行航线规划方法;设计了综合3D威胁信息的惩罚函数(亲和力函数);构建了包含动态、静态威胁及不可飞区域的综合威胁模型.据此,设计了不同威胁度环境下的单、双飞行航线,并将人工免疫算法规划的航线与遗传算法进行比较.结果表明,在简单威胁环境下,遗传算法规划时间短、路径较长;在复杂环境下,遗传算法的单机规划失败率极高(大于95%),双机规划失败.人工免疫算法能够为单(双)机规划出一条最优及多条待选飞行航线.

关键词: TF/TA2航线规划, 人工免疫算法, 遗传算法, 地形跟踪

Abstract:

Flight path planning by artificial immune algorithm approach met the requirements of aircraft's flyability and operation is proposed for the problem of single and double TF/TA2 flight path planning. Punishment function (affinity function) with comprehensive 3D threat information is designed. A comprehensive threat model is formed including dynamic and static threats and no-fly-zone. Accordingly, single and dual flight paths are planned by AIA, which have been compared with the paths by GA. The results show that, GA's planned a quick and longer path compared under simple threat environment; in complex environments, GA has high failure rate (greater than 95%) for single aircraft, but it is failed for double aircrafts. For the single and double aircrafts, AIA can provides one optimal and more candidate optimal flight paths.

Key words: path planning, artificial immune algorithm, GA, TF/TA2

中图分类号: